

BACK TO PRISON

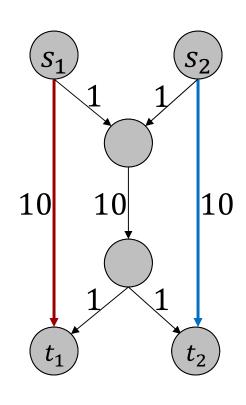
- The only Nash equilibrium in Prisoner's dilemma is bad; but how bad is it?
- Objective function: social cost = sum of costs
- NE is six times worse than the optimum

	Cooperate	Defect
Cooperate	-1,-1	-9,0
Defect	0,-9	-6,-6

ANARCHY AND STABILITY

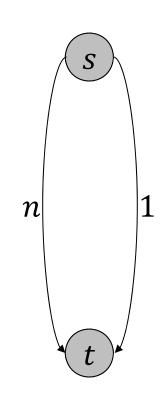
- Fix a class of games, an objective function, and an equilibrium concept
- The price of anarchy (stability) is the worst-case ratio between the worst (best) objective function value of an equilibrium of the game, and that of the optimal solution
- In this lecture:
 - Objective function = social cost
 - Equilibrium concept = Nash equilibrium

- n players in weighted directed graph G
- Player i wants to get from s_i to t_i ; strategy space is $s_i \rightarrow t_i$ paths
- Each edge e has cost c_e
- Cost of edge is split between all players using edge
- Cost of player is sum of costs over edges on path

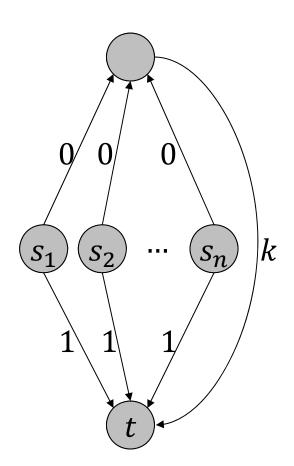


- With n players, the example on the right has an NE with social cost n
- Optimal social cost is 1
- \Rightarrow Price of anarchy $\ge n$

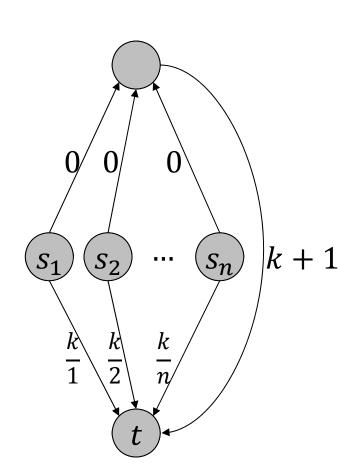
Prove that the price of anarchy is at most n



- Think of the 1 edges as cars, and the k edge as mass transit
- Bad Nash equilibrium with $\cot n$
- Good Nash equilibrium with $\cos k$
- Now let's modify the example...



- OPT= k + 1
- Only equilibrium has cost $k \cdot H(n)$
- \Rightarrow price of stability is at least $\Omega(\log n)$
- We will show that the price of stability is $\Theta(\log n)$



POTENTIAL GAMES

• A game is an exact potential game if there exists a function $\Phi: \prod_{i=1}^n S_i \to \mathbb{R}$ such that for all $i \in \mathbb{N}$, for all $s \in \prod_{i=1}^n S_i$, and for all $s'_i \in S_i$, $cost_i(s'_i, s_{-i}) - cost_i(s) = \Phi(s'_i, s_{-i}) - \Phi(s)$

Why does the existence of an exact potential function imply the existence of a pure Nash equilibrium?

POTENTIAL GAMES

- Theorem: the cost sharing game is an exact potential game
- Proof:
 - Let $n_e(s)$ be the number of players using e under s
 - Define the potential function

$$\Phi(s) = \sum_{e} \sum_{k=1}^{n_e(s)} \frac{c_e}{k}$$

o If player changes paths, pays $\frac{c_e}{n_e(s)+1}$ for each new edge, gets $\frac{c_e}{n_e(s)}$ for each old edge, so $\Delta \mathrm{cost}_i = \Delta \Phi$

POTENTIAL GAMES

• Theorem: The cost of stability of cost sharing games is $O(\log n)$

• Proof:

- It holds that $cost(s) \le \Phi(s) \le H(n) \cdot cost(s)$
- $_{\circ}$ Take a strategy profile s that minimizes Φ
- s is an NE
- ∘ $cost(s) \le \Phi(s) \le \Phi(OPT) \le H(n) \cdot cost(OPT)$ ■

COST SHARING SUMMARY

- In every cost sharing game
 - $\forall NE \, s, \, cost(s) \leq n \cdot cost(OPT)$
 - $\exists NE \ s \ \text{such that } \cos t(s) \leq H(n) \cdot \cos t(OPT)$
- There exist cost sharing games s.t.
 - $\exists NE \ s \ \text{such that } \cos t(s) \ge n \cdot \cos t(OPT)$
 - \circ $\forall NE s$, $cost(s) \geq H(n) \cdot cost(OPT)$

CONGESTION GAMES

- Generalization of cost sharing games
- n players and m resources
- Each player i chooses a set of resources (e.g., a path) from collection S_i of allowable sets of resources (e.g., paths from s_i to t_i)
- Cost of resource j is a function $f_j(n_j)$ of the number n_j of players using it
- Cost of player is the sum over used resources

CONGESTION GAMES

- Theorem [Rosenthal 1973]: Every congestion game is an exact potential game
- Proof: The exact potential function is

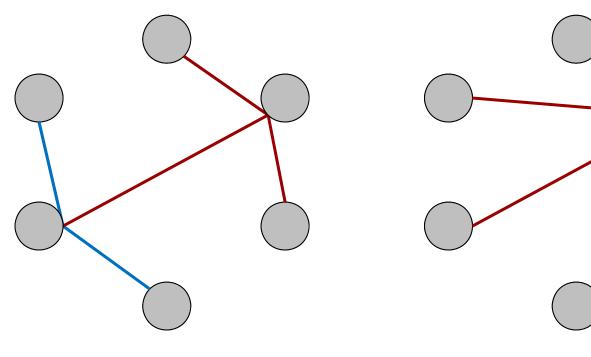
$$\Phi(\mathbf{s}) = \sum_{j} \sum_{i=1}^{n_j(\mathbf{s})} f_j(i)$$

• Theorem [Monderer and Shapley 1996]: Every potential game is isomorphic to a congestion game

NETWORK FORMATION GAMES

- Each player is a vertex v
- Strategy of v: set of undirected edges to build that touch v
- Strategy profile \boldsymbol{s} induces undirected graph $G(\boldsymbol{s})$
- Cost of building any edge is α
- $cost_v(s) = \alpha n_v(s) + \sum_u d(u, v)$, where $n_v =$ #edges bought by v, d is shortest path in #edges
- $cost(s) = \sum_{u \neq v} d(u, v) + \alpha |E|$

• NE with $\alpha = 3$



Suboptimal

Optimal

• Lemma: If $\alpha \geq 2$ then any star is optimal, and if $\alpha \leq 2$ then a complete graph is optimal

• Proof:

- Suppose $\alpha \leq 2$, and consider any graph that is not complete
- Adding an edge will decrease the sum of distances by at least 2, and costs only α
- Suppose $\alpha \geq 2$ and the graph contains a star, so the diameter is at most 2; deleting a non-star edge increases the sum of distances by at most 2, and saves

Poll: For which values of α is any star a NE, and for which is the complete graph a NE?

1.
$$\alpha \geq 1$$
, $\alpha \leq 1$

2.
$$\alpha \geq 2, \alpha \leq 1$$

3.
$$\alpha \geq 1$$
, none

4.
$$\alpha \geq 2$$
, none

• Theorem:

- If $\alpha \geq 2$ or $\alpha \leq 1$, PoS = 1
- For $1 < \alpha < 2$, PoS $\leq 4/3$

• Proof:

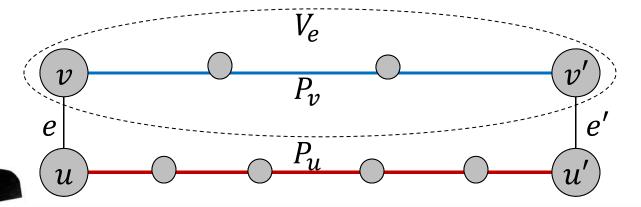
- Part 1 is immediate from the lemma and poll
- For $1 < \alpha < 2$, the star is a NE, while OPT is a complete graph
- Worst case ratio when $\alpha \to 1$:

$$\frac{2n(n-1) - (n-1)}{n(n-1) + n(n-1)/2} = \frac{4n^2 - 6n + 2}{3n^2 - 3n} < \frac{4}{3} \quad \blacksquare$$

- Theorem [Fabrikant et al. 2003]: The price of anarcy of network creation games is $O(\sqrt{\alpha})$
- Lemma: If s is a Nash equilibrium that induces a graph of diameter d, then $cost(s) \leq O(d) \cdot OPT$

- OPT = $\Omega(\alpha n + n^2)$
 - Buying a connected graph costs at least $(n-1)\alpha$
 - There are $\Omega(n^2)$ distances
- Distance costs $\leq dn^2 \Rightarrow$ focus on edge costs
- There are at most n-1 cut edges \Rightarrow focus on noncut edges

- Claim: Let e = (u, v) be a noncut edge, then the distance d(u, v) with e deleted $\leq 2d$
 - $v_e = \text{set of nodes s.t.}$ the shortest path from u uses e
 - Figure shows shortest path avoiding e, e' = (u', v') is the edge on the path entering V_e
 - P_u is the shortest path from u to $u' \Rightarrow |P_u| \leq d$
 - $|P_v| \le d-1$ as $P_v \cup e$ is shortest path from u to v' =



- Claim: There are $O(nd/\alpha)$ noncut edges paid for by any vertex u
 - Let e = (u, v) be an edge paid for by u
 - By previous claim, deleting *e* increases distances from u by at most $2d|V_e|$
 - \circ G is an equilibrium $\Rightarrow \alpha \leq 2d|V_{e}| \Rightarrow |V_{e}| \geq \alpha/2d$
 - n vertices overall \Rightarrow can't be more than $2nd/\alpha$ sets $V_e \blacksquare$

- $O(nd/\alpha)$ noncut edges per vertex
- O(nd) total payment for these per vertex
- $O(n^2d)$ overall

PROOF OF THEOREM

- By lemma, it is enough to show that the diameter at a NE $\leq 2\sqrt{\alpha}$
- Suppose $d(u, v) \ge 2k$ for some k
- By adding the edge (u, v), u pays α and improves distance to second half of the $u \rightarrow v$ shortest path by $(2k-1)+(2k-3)+\cdots+1=k^2$
- If $d(u,v) > 2\sqrt{\alpha}$, it is beneficial to add edge