CMU 15-896

 NONCOOPERATIVE GAMES 2: LEARNING AND MINIMAXTEACHER:
ARIEL PROCACCIA

Reminder: The Minimax Theorem

- Theorem [von Neumann, 1928]: Every 2-player zero-sum game has a unique value v such that:
- Player 1 can guarantee value at least v
- Player 2 can guarantee loss at
 most v
- We will prove the theorem via no-regret learning

15896 Spring 2016: Lecture 18

HOW TO REACH YOUR SPACESHIP

- Each morning pick one of n possible routes
- Then find out how long each route took
- Is there a strategy for picking routes that does almost as well as the best fixed route in hindsight?

53 minutes
47 minutes -••

THE MODEL

- View as a matrix (maybe infinite \#columns)

- Algorithm picks row, adversary column
- Alg pays cost of (row,column) and gets column as feedback
- Assume costs are in $[0,1]$

THE MODEL

- Define average regret in T time steps as (average per-day cost of alg) - (average per-day cost of best fixed row in hindsight)
- No-regret algorithm: regret $\rightarrow 0$ as $T \rightarrow \infty$
- Not competing with adaptive strategy, just the best fixed row

EXAMPLE

- Algorithm 1: Alternate between U and D
- Poll 1: What is algorithm 1's worst-case average regret?

1. $\Theta(1 / T)$
2. $\Theta(1)$
3. $\Theta(T)$
4. ∞

EXAMPLE

- Algorithm 2: Choose action that has lower cost so far
- Poll 2: What is algorithm 2's worst-case average regret?

1. $\Theta(1 / T)$
2. $\Theta(1 / \sqrt{ } T)$
3. $\Theta(1 / \log T)$
4. $\Theta(1)$

What can we say more generally about deterministic algorithms?

Using expert AdVice

- Want to predict the stock market
- Solicit advice from n experts
- Expert $=$ someone with an opinion

Day	Expert 1	Expert 2	Expert 3	Charlie
1	-	-	+	+
2	+	-	+	-
\ldots	\ldots	\ldots	\ldots	\ldots

Truth
+
-
\cdots

- Can we do as well as best in hindsight?

15896 Spring 2016: Lecture 18

SIMPLER QUESTION

- One of the n experts never makes a mistake
- We want to find out which one
- Algorithm 3: Take majority vote over experts that have been correct so far
- Poll 3: What is algorithm 3's worst-case number of mistakes?

1. $\Theta(1)$
2. $\Theta(\log n)$
3. $\Theta(n)$
4. ∞

WhAT IF NO EXPERT IS PERFECT?

- Idea: Run algorithm 3 until all experts are crossed off, then repeat
- Makes at most $\log n$ mistakes per mistake of the best expert
- But this is wasteful: we keep forgetting what we've learned

Weighted Majority

- Intuition: Making a mistake doesn't disqualify an expert, just lowers its weight
- Weighted Majority Algorithm:
- Start with all experts having weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weight in half

	Expert 1	Expert 2	Expert 3	Charlie
Weight 1	1	1	1	1
Prediction 1	-	+	+	+
Weight 2	0.5	1	1	1
Prediction 2	+	+	-	-
Weight 3	0.5	1	0.5	0.5

Alg	Truth

+	+

-	+

Weighted MAJOrity: AnAlysis

- $M=\#$ mistakes we've made so far
- $m=\#$ mistakes of best expert so far
- $W=$ total weight (starts at n)
- For each mistake, W drops by at least 25%
\Rightarrow after M mistakes: $W \leq n(3 / 4)^{M}$
- Weight of best expert is $(1 / 2)^{m}$
$\left(\frac{1}{2}\right)^{m} \leq n\left(\frac{3}{4}\right)^{M} \Rightarrow\left(\frac{4}{3}\right)^{M} \leq n 2^{m} \Rightarrow M \leq 2.5(m+\log n)$

Randomized Weighted Majority

- Randomized Weighted Majority Algorithm:
- Start with all experts having weight 1
- Predict proportionally to weights: the total weight of + is w_{+}and the total weight of is w_{-}, predict + with probability $\frac{w_{+}}{w_{+}+w_{-}}$and - with probability $\frac{w_{-}}{w_{+}+w_{-}}$
- Penalize mistakes by removing ϵ fraction of weight

Randomized Weighted Majority

Idea: smooth out the worst case

The worst-case is
~50-50: now we have a 50% chance of getting it right

What about 90-10?
We're very likely to agree with the majority

Analysis

- At time t we have a fraction F_{t} of weight on experts that made a mistake
- Prob. F_{t} of making a mistake, remove ϵF_{t} fraction of total weight
- $W_{\text {final }}=n \prod_{t}\left(1-\epsilon F_{t}\right)$
- $\ln W_{\text {final }}=\ln n+\sum_{t} \ln \left(1-\epsilon F_{t}\right)$

$$
\leq \ln n-\epsilon \sum_{t} F_{t}=\ln n-\epsilon M
$$

$$
\ln (1-x) \leq-x
$$

ANALYSIS

15896 Spring 2016: Lecture 18
Carnegie Mellon University 18

ANALYSIS

- Weight of best expert is $W_{\text {best }}=(1-\epsilon)^{m}$
- $\ln n-\epsilon M \geq \ln W_{\text {final }} \geq \ln W_{\text {best }}=m \ln (1-\epsilon)$
- By setting $\epsilon=\sqrt{\frac{\log n}{m}}$ and solving, we get

$$
M \leq m+2 \sqrt{m \log n}
$$

- Since $m \leq T, M \leq m+2 \sqrt{T \log n}$
- Average regret is $(2 \sqrt{T \log n}) / T \rightarrow 0 ■$

MORE GENERALLY

- Each expert is an action with cost in [0,1]
- Run Randomized Weighted Majority
- Choose expert i with probability w_{i} / W
- Update weights: $w_{i} \leftarrow w_{i}\left(1-c_{i} \epsilon\right)$
- Same analysis applies:
- Our expected cost: $\sum_{j} c_{j} w_{j} / W$
- Fraction of weight removed: $\epsilon \sum_{j} c_{j} w_{j} / W$
- So, fraction removed $=\epsilon \cdot($ our cost $)$

PROOF OF THE MINIMAX THM

- Suppose for contradiction that zero-sum game G has $V_{C}>V_{R}$ such that:
- If column player commits first, there is a row that guarantees row player at least V_{C}
- If row player commits first, there is a column that guarantees row player at most V_{R}
- Scale matrix so that payoffs to row player are in $[-1,0]$, and let $V_{C}=V_{R}+\delta$

PROOF OF THE MINIMAX THM

- Row player plays RWM, and column player responds optimally to current mixed strategy
- After T steps
- $A L G \geq$ best row in hindsight $-2 \sqrt{T \log n}$
- Best row in hindsight $\geq T \cdot V_{C}$
- $\mathrm{ALG} \leq T \cdot V_{R}$
- It follows that $T \cdot V_{R} \geq T \cdot V_{C}-2 \sqrt{T \log n}$
- $\delta T \leq 2 \sqrt{T \log n}$ - contradiction for large enough T

