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Reminder: The Minimax Theorem

• Theorem [von Neumann, 1928]: 
Every 2-player zero-sum game 
has a unique value such that:
o Player 1 can guarantee value at 

least 
o Player 2 can guarantee loss at 

most 
• We will prove the theorem via 

no-regret learning
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How to reach your spaceship

• Each morning pick one of 
possible routes

• Then find out how long each 
route took

• Is there a strategy for 
picking routes that does 
almost as well as the best 
fixed route in hindsight?
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The model

• View as a matrix (maybe infinite 
#columns)

• Algorithm picks row, adversary column
• Alg pays cost of (row,column) and gets 

column as feedback
• Assume costs are in 
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The model

• Define average regret in time steps as 
(average per-day cost of alg) (average 
per-day cost of best fixed row in hindsight)

• No-regret algorithm: regret as 
• Not competing with adaptive strategy, just 

the best fixed row
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Example

• Algorithm 1: Alternate between 
U and D

• Poll 1: What is algorithm 1’s 
worst-case average regret?
1.

2.

3.

4.
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Example

• Algorithm 2: Choose action that 
has lower cost so far

• Poll 2: What is algorithm 2’s 
worst-case average regret?
1.

2.

3.

4.
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What can we say more 
generally about 
deterministic algorithms?
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Using expert advice

• Want to predict the stock market
• Solicit advice from experts

o Expert = someone with an opinion

• Can we do as well as best in hindsight?
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Simpler question
• One of the experts never makes a mistake
• We want to find out which one
• Algorithm 3: Take majority vote over experts 

that have been correct so far
• Poll 3: What is algorithm 3’s worst-case number 

of mistakes?
1. Θ 1
2. Θ log ݊
3. Θሺ݊ሻ
4. ∞

10



15896 Spring 2016: Lecture 18

What if no expert is perfect?

• Idea: Run algorithm 3 until all experts are 
crossed off, then repeat

• Makes at most mistakes per mistake 
of the best expert

• But this is wasteful: we keep forgetting 
what we’ve learned
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Weighted Majority

• Intuition: Making a mistake doesn’t 
disqualify an expert, just lowers its 
weight

• Weighted Majority Algorithm:
o Start with all experts having weight 1
o Predict based on weighted majority vote
o Penalize mistakes by cutting weight in 

half
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Weighted Majority: Analysis

• #mistakes we’ve made so far
• #mistakes of best expert so far
• total weight (starts at )
• For each mistake, drops by at least 25%

after mistakes: ெ

• Weight of best expert is ௠
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Randomized Weighted Majority

• Randomized Weighted Majority 
Algorithm:
o Start with all experts having weight 1
o Predict proportionally to weights: the total 

weight of is ା and the total weight of 
is ି, predict with probability ௪శ

௪శା௪ష
and 

with probability ௪ష
௪శା௪ష

o Penalize mistakes by removing fraction of 
weight
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Randomized Weighted Majority

Idea: smooth out the worst case
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Analysis

• At time we have a fraction ௧ of weight 
on experts that made a mistake

• Prob. ௧ of making a mistake, remove ௧
fraction of total weight

• ௙௜௡௔௟ ௧௧

• ௙௜௡௔௟ ௧௧

௧௧
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Analysis 
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Analysis
• Weight of best expert is ௕௘௦௧

௠

• ௙௜௡௔௟ ௕௘௦௧

• By setting ୪୭୥ ௡
௠

and solving, we get

• Since , 

• Average regret is 
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More generally
• Each expert is an action with cost in 
• Run Randomized Weighted Majority

o Choose expert with probability ௜

o Update weights: ௜ ௜ ௜

• Same analysis applies:
o Our expected cost: ௝ ௝௝

o Fraction of weight removed: ௝ ௝௝

o So, fraction removed (our cost)
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Proof of the minimax thm

• Suppose for contradiction that zero-sum 
game has ஼ ோ such that:
o If column player commits first, there is a row 

that guarantees row player at least ஼

o If row player commits first, there is a column 
that guarantees row player at most ோ

• Scale matrix so that payoffs to row player 
are in , and let ஼ ோ
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Proof of the minimax thm

• Row player plays RWM, and column player 
responds optimally to current mixed strategy

• After steps
o ALG ൒ best row in hindsight െ2 ܶ log ݊
o Best row in hindsight ൒ ܶ ⋅ ஼ܸ

o ALG ൑ ܶ ⋅ ோܸ

• It follows that ோ ஼

• contradiction for large 
enough 
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