CMU 15-896 Noncooperative games 2: Learning and minimax

TEACHER: ARIEL PROCACCIA

REMINDER: THE MINIMAX THEOREM

- Theorem [von Neumann, 1928]: Every 2-player zero-sum game has a unique value v such that:
 - Player 1 can guarantee value at least v
 - $\circ \quad \mbox{Player 2 can guarantee loss at} \\ \mbox{most } \ensuremath{\boldsymbol{v}} \ensur$
- We will prove the theorem via no-regret learning

HOW TO REACH YOUR SPACESHIP

- Each morning pick one of *n* possible routes
- Then find out how long each route took
- Is there a strategy for picking routes that does almost as well as the best fixed route in hindsight?

THE MODEL

- View as a matrix (maybe infinite #columns)
 Adversary
- Algorithm picks row, adversary column
- Alg pays cost of (row,column) and gets column as feedback
- Assume costs are in [0,1]

THE MODEL

- Define average regret in T time steps as (average per-day cost of alg) - (average per-day cost of best fixed row in hindsight)
- No-regret algorithm: regret $\rightarrow 0$ as $T \rightarrow \infty$
- Not competing with adaptive strategy, just the best fixed row

EXAMPLE

- Algorithm 1: Alternate between U and D
- Poll 1: What is algorithm 1's worst-case average regret?
 - 1. $\Theta(1/T)$
 - 2. Θ(1)
 - 3. $\Theta(T)$
 - *4.* 00

Algorithm

Adversary

	1	0
0	0	1

15896 Spring 2016: Lecture 18

EXAMPLE

- Algorithm 2: Choose action that has lower cost so far
- Poll 2: What is algorithm 2's worst-case average regret?
 - 1. $\Theta(1/T)$
 - 2. $\Theta(1/\sqrt{T})$
 - 3. $\Theta(1/\log T)$
 - 4. Θ(1)

Adversary

	1	0
C	0	1

15896 Spring 2016: Lecture 18

What can we say more generally about deterministic algorithms?

15896 Spring 2016: Lecture 18

USING EXPERT ADVICE

- Want to predict the stock market
- Solicit advice from n experts
 - \circ Expert = someone with an opinion

Day	Expert 1	Expert 2	Expert 3	Charlie	
1	_	_	+	+	
2	+	_	+	_	
•••	•••	•••	•••	•••	

• Can we do as well as best in hindsight?

15896 Spring 2016: Lecture 18

Truth

+

SIMPLER QUESTION

- One of the n experts never makes a mistake
- We want to find out which one
- Algorithm 3: Take majority vote over experts that have been correct so far
- Poll 3: What is algorithm 3's worst-case number of mistakes?
 - 1. Θ(1)
 - 2. $\Theta(\log n)$
 - 3. $\Theta(n)$

 ∞

15896 Spring 2016: Lecture 18

WHAT IF NO EXPERT IS PERFECT?

- Idea: Run algorithm 3 until all experts are crossed off, then repeat
- Makes at most $\log n$ mistakes per mistake of the best expert
- But this is wasteful: we keep forgetting what we've learned

WEIGHTED MAJORITY

- Intuition: Making a mistake doesn't disqualify an expert, just lowers its weight
- Weighted Majority Algorithm:
 - Start with all experts having weight 1
 - Predict based on weighted majority vote
 - Penalize mistakes by cutting weight in half

	Expert 1	Expert 2	Expert 3	Charlie
Weight 1	1	1	1	1
Prediction 1	_	+	+	+
Weight 2	0.5	1	1	1
Prediction 2	+	+	_	_
Weight 3	0.5	1	0.5	0.5

Wrong, 1 Right, 3

15896 Spring 2016: Lecture 18

WEIGHTED MAJORITY: ANALYSIS

- M = #mistakes we've made so far
- m = #mistakes of best expert so far
- W = total weight (starts at n)
- For each mistake, W drops by at least 25% \Rightarrow after M mistakes: $W \leq n(3/4)^M$
- Weight of best expert is $(1/2)^m$

 $\left(\frac{1}{2}\right)^m \le n\left(\frac{3}{4}\right)^M \Rightarrow \left(\frac{4}{3}\right)^M \le n2^m \Rightarrow M \le 2.5(m + \log n)$

15896 Spring 2016: Lecture 18

RANDOMIZED WEIGHTED MAJORITY

- Randomized Weighted Majority Algorithm:
 - Start with all experts having weight 1
 - Predict proportionally to weights: the total weight of + is w_+ and the total weight of is w_- , predict + with probability $\frac{w_+}{w_++w_-}$ and - with probability $\frac{w_-}{w_++w_-}$
 - Penalize mistakes by removing ϵ fraction of weight

RANDOMIZED WEIGHTED MAJORITY

Idea: smooth out the worst case

The worst-case is ~50-50: now we have a 50% chance of getting it right

What about 90-10? We're very likely to agree with the majority

1

15896 Spring 2016: Lecture 18

ANALYSIS

- At time t we have a fraction F_t of weight on experts that made a mistake
- Prob. F_t of making a mistake, remove ϵF_t fraction of total weight

•
$$W_{final} = n \prod_t (1 - \epsilon F_t)$$

• $\ln W_{final} = \ln n + \sum_{t} \ln(1 - \epsilon F_{t})$ $\leq \ln n - \epsilon \sum_{t} F_{t} = \ln n - \epsilon M$ \uparrow $\ln(1-x) \leq -x$ (next slide)

15896 Spring 2016: Lecture 18

ANALYSIS

15896 Spring 2016: Lecture 18

ANALYSIS

- Weight of best expert is $W_{best} = (1 \epsilon)^m$
- $\ln n \epsilon M \ge \ln W_{final} \ge \ln W_{best} = m \ln(1 \epsilon)$
- By setting $\epsilon = \sqrt{\frac{\log n}{m}}$ and solving, we get $M \le m + 2\sqrt{m\log n}$
- Since $m \le T$, $M \le m + 2\sqrt{T \log n}$
- Average regret is $\left(2\sqrt{T\log n}\right)/T \to 0$

More generally

- Each expert is an action with cost in [0,1]
- Run Randomized Weighted Majority
 - Choose expert i with probability w_i/W
 - Update weights: $w_i \leftarrow w_i(1 c_i \epsilon)$
- Same analysis applies:
 - Our expected cost: $\sum_j c_j w_j / W$
 - Fraction of weight removed: $\epsilon \sum_j c_j w_j / W$
 - So, fraction removed = $\epsilon \cdot (\text{our cost})$

PROOF OF THE MINIMAX THM

- Suppose for contradiction that zero-sum game G has $V_C > V_R$ such that:
 - $_{\circ}~$ If column player commits first, there is a row that guarantees row player at least V_{C}
 - $_{\circ}~$ If row player commits first, there is a column that guarantees row player at most V_R
- Scale matrix so that payoffs to row player are in [-1,0], and let $V_C = V_R + \delta$

PROOF OF THE MINIMAX THM

- Row player plays RWM, and column player responds optimally to current mixed strategy
- After T steps
 - ALG \geq best row in hindsight $-2\sqrt{T \log n}$
 - Best row in hindsight $\geq T \cdot V_C$
 - $\circ \quad \text{ALG} \leq T \cdot V_R$
- It follows that $T \cdot V_R \ge T \cdot V_C 2\sqrt{T \log n}$
- $\delta T \leq 2\sqrt{T \log n}$ contradiction for large enough T

15896 Spring 2016: Lecture 18