CMU 15-896 Noncooperative games 1: Basic concepts

TEACHER: ARIEL PROCACCIA

NORMAL-FORM GAME

- A game in normal form consists of:
 - $_{\circ}~$ Set of players $N=\{1,\ldots,n\}$
 - $\circ \quad \text{Strategy set } S$
 - For each $i \in N$, utility function $u_i: S^n \to \mathbb{R}$: if each $j \in N$ plays the strategy $s_j \in S$, the utility of player i is $u_i(s_1, \dots, s_n)$
- Next example created by taking screenshots of http://youtu.be/jILgxeNBK 8

15896 Spring 2016: Lecture 17

One day your cousin Ted shows up.

You split the beach in half; you set up at 1/4.

One day Teddy sets up at the 1/2 point!

15

15896 Spring 2016: Lecture 17

THE ICE CREAM WARS

• To be continued...

15896 Spring 2016: Lecture 17

THE PRISONER'S DILEMMA

- Two men are charged with a crime
- They are told that:
 - If one rats out and the other does not, the rat will be freed, other jailed for nine years
 - If both rat out, both will be jailed for six years
- They also know that if neither rats out, both will be jailed for one year

THE PRISONER'S DILEMMA

What would you do?

15896 Spring 2016: Lecture 17

PRISONER'S DILEMMA ON TV

http://youtu.be/S0qjK3TWZE8

15896 Spring 2016: Lecture 17

THE PROFESSOR'S DILEMMA

Dominant strategies?

15896 Spring 2016: Lecture 17

NASH EQUILIBRIUM

- Each player's strategy is a best response to strategies of others
- Formally, a Nash equilibrium is a vector of strategies $s = (s_1 \dots, s_n) \in S^n$ such that $\forall i \in N, \forall s'_i \in S, u_i(s) \ge u_i(s'_i, s_{-i})$

15896 Spring 2016: Lecture 17

NASH EQUILIBRIUM

http://youtu.be/CemLiSI5ox8

15896 Spring 2016: Lecture 17

RUSSEL CROWE WAS WRONG

working for 20+ hours a week on the programming exercises of Hebrew U Intro to CS course, which was taught by some guy called Noam Nisan. I didn't know anything about game theory, and Crowe's explanation made a lot of sense at the time.

Home About

PC Chair

I easily found the relevant scene on youtube. In the scene, Nash's friends are trying to figure out how to seduce a beautiful blonde and her less beautiful friends. Then Nash/Crowe has an epiphany. The hubbub of the seedy Princeton bar is drowned by inspirational music, as Nash announces:

June 2011

15896 Spring 2016: Lecture 17

Carnegie Mellon University 11

DAMMIT.

FEYNMAN!

END OF THE ICE CREAM WARS

Day 3 of the ice cream wars...

Teddy sets up south of you!

ROCK-PAPER-SCISSORS

Nash equilibrium?

15896 Spring 2016: Lecture 17

MIXED STRATEGIES

- A mixed strategy is a probability distribution over (pure) strategies
- The mixed strategy of player $i \in N$ is $x_i,$ where

 $x_i(s_i) = \Pr[i \text{ plays } s_i]$

• The utility of player $i \in N$ is

$$u_i(x_1, \dots, x_n) = \sum_{(s_1, \dots, s_n) \in S^n} u_i(s_1, \dots, s_n) \cdot \prod_{j=1}^n x_j(s_j)$$

15896 Spring 2016: Lecture 17

Carnegie Mellon University 14

n

NASH'S THEOREM

- Theorem [Nash, 1950]: if everything is finite then there exists at least one (possibly mixed) Nash equilibrium
- We'll talk about computation some other time

15896 Spring 2016: Lecture 17

DOES NE MAKE SENSE?

- Two players, strategies are $\{2,\ldots,100\}$
- If both choose the same number, that is what they get
- If one chooses s, the other t, and s < t, the former player gets s + 2, and the latter gets s - 2
- Poll 1: what would you choose?

CORRELATED EQUILIBRIUM

- Let $N=\{1,2\}$ for simplicity
- A mediator chooses a pair of strategies (s_1, s_2) according to a distribution p over S^2
- Reveals s_1 to player 1 and s_2 to player 2
- When player 1 gets $s_1 \in S,$ he knows that the distribution over strategies of 2 is

 $\Pr[s_2|s_1] = \frac{\Pr[s_1 \land s_2]}{\Pr[s_1]} = \frac{p(s_1, s_2)}{\sum_{s_2' \in S} p(s_1, s_2')}$

15896 Spring 2016: Lecture 17

CORRELATED EQUILIBRIUM

- Player 1 is best responding if for all $s_1' \in S$
 - $\sum_{s_2 \in S} \Pr[s_2|s_1] \, u_1(s_1, s_2) \ge \sum_{s_2 \in S} \Pr[s_2|s_1] \, u_1(s_1', s_2)$
- Equivalently,

$$\sum_{s_2 \in S} p(s_1, s_2) u_1(s_1, s_2) \ge \sum_{s_2 \in S} p(s_1, s_2) u_1(s_1', s_2)$$

• *p* is a correlated equilibrium (CE) if both players are best responding

15896 Spring 2016: Lecture 17

GAME OF CHICKEN

http://youtu.be/u7hZ9jKrwvo

15896 Spring 2016: Lecture 17

GAME OF CHICKEN

- Social welfare is the sum of utilities
- Pure NE: (C,D) and (D,C), social welfare = 5
- Mixed NE: both (1/2,1/2), social welfare = 4 Chick
- Optimal social welfare = 6

	Dare	Chicken
Dare	$0,\!0$	$4,\!1$
icken	$1,\!4$	$3,\!3$

15896 Spring 2016: Lecture 17

GAME OF CHICKEN

• Correlated equilibrium:

• Social welfare of $CE = \frac{16}{3}$

15896 Spring 2016: Lecture 17 Car

IMPLEMENTATION OF CE

- Instead of a mediator, use a hat!
- Balls in hat are labeled with "chicken" or "dare", each blindfolded player takes a ball

Which balls implement the distribution of the previous slide?

15896 Spring 2016: Lecture 17

CE vs. NE

- Poll 2: What is the relation between CE and NE?
 - 1. CE \Rightarrow NE
 - 2. NE \Rightarrow CE
 - 3. NE \Leftrightarrow CE
 - 4. NE || CE

15896 Spring 2016: Lecture 17

CE AS LP

• Can compute CE via linear programming in polynomial time!

find $\forall s_1, s_2 \in S, p(s_1, s_2)$ s.t. $\forall s_1, s'_1, s_2 \in S, \sum_{s_2 \in A} p(s_1, s_2) u_1(s_1, s_2) \ge \sum_{s_2 \in A} p(s_1, s_2) u_1(s'_1, s_2)$ $\forall s_1, s_2, s'_2 \in S, \sum_{s_1 \in A} p(s_1, s_2) u_2(s_1, s_2) \ge \sum_{s_1 \in A} p(s_1, s_2) u_2(s_1, s'_2)$ $\sum_{s_1, s_2 \in S} p(s_1, s_2) = 1$

 $\forall s_1, s_2 \in S, p(s_1, s_2) \in [0, 1]$

15896 Spring 2016: Lecture 17