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DISPLAY ADVERTISING

e Display advertising is the
largest matching problem in
the world

e Bipartite graph with
advertisers and impressions
e Advertisers specify which

impressions are acceptable
— this defines the edges

e Impressions arrive online
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THE (SIMPLEST) MODEL

e There is a bipartite graph ¢ = (U,V,E),
Ul =n

e U is known “offline”, the vertices of V arrive
online (with their incident edges)

e Objective: maximize size of matching

e ALG has competitive ratio a < 1 if for

every graph G and every input order m of V,
ALG(G, )

= o
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ALGORITHM GREEDY

e Algorithm GREEDY: match to an arbitrary
unmatched neighbor (if one exists)

Poll 1: Competitive ratio of GREEDY?

7. 1/n
2 1/yn
3 1/logn
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UPPER BOUND

* Observation: The competitive ratio of any
deterministic algorithm is at most 1/2

U v U v
@><© O
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TAKE 2. ALGORITHM RANDOM

e Obvious idea: randomness

e Algorithm RANDOM: Match to @ :
an unmatched neighbor ® /Q
///Q

uniformly at random O /W I

e Achieves 34 on previous 8%%9
example @)

éCompetitive ratio of RANDOM ‘R‘ %/

éon graph on the right?

N| S
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TAKE 3: ALGORITHM RANKING

 Algorithm RANKING:

o Choose a random permutation

m:U - |n] O /Q
o Match each vertex to its unmatched O / o
neighbor u with the lowest m(u) O WQ 2
e Looks like this is doing better than W:
RANDOM on previous example! W / O
* Theorem |Karp et al. 1990|: The Q% 7 Oln
competitive ratio of RANKING is % O 2
1—1/e O
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PROOF OF THEOREM

e Assume for ease of exposition that OPT =n
 Fix a perfect matching M*:UUV - U UV

e Fixmand u e U

e If u is matched under m, (7T, u) is a match
event at position m(u), otherwise miss event

e ALG is the sum of probabilities of match
events at all positions
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PROOF OF THEOREM

m induces a matching M"

Consider a miss event (7, u™)
with m(u*) =t

v*=M*"(u"), u' = M*™(v*)
Define m; by moving u™ to
position i = 1, ...,n

Claim: for each i, M™i(v*) = u;

with Tt (ui) <t
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PROOF OF THEOREM

* Proof of claim: by illustration
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PROOF OF THEOREM

* We have a 1-n mapping between miss events
(,u”) and match events (m;, u;) where
M™% i(u;)) = M*(u*) and m;(u;) < mw(u™)

e (Claim: Each miss event at position t is mapped
to n unique match events

e Proof of claim:

o Fix miss events (m,u) and (rr',u’) such that
n(u) =n'(u") = t, and both are mapped to (7, i)

o M) =MW =MW)=2>u=1u

o The map only moves u from position t in m and 7',
giving 7 in both cases >t =n' =m
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PROOF OF THEOREM

« We get the following set of equations for every
t=1,..,n:

n - Pr[Miss att] < Z Pr[Match at s]
s<t

e Setting x; = Pr[Match at t], this is

1 <1Z
xt—n Xs

S<t

By minimizing the objective function );; x; over

this polytope, we get ). x; = (1 — l) n

e
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UPPER BOUND

e Theorem |Karp et al. 1990|: No randomized alg
has competitive ratio better than 1 — é +0(1)

e The proof below is due to Wajc [2015]

 Fractional algorithm: deterministically assign
fractional weights to edges such that s.t.
VueUUV, f(u) = Xuvyer W < 1

e Lemma |Wajc 2015|: For any randomized alg
there is a fractional alg with at least the same
competitive ratio
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PROOF OF THEOREM

e First online vertex vy is @ s
connected to all U -

1/5

e Let uy; € argmin,cy f(u), in
particular f(uy) < 1/n

e 1, will not be connected to any
future online vertex
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PROOF OF THEOREM

e t-th online vertex v; is
connected to all U\{uq, ..., us_1}

° ut € argminuEU\{ul,...,ut_l}f(u) &

e u; will not be connected to
any future online vertex

&)

u
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PROOF OF THEOREM
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PROOF OF THEOREM

o After step t, offline vertices that continue to be
matched are matched to an average of at least

f(u)_zk 1 n—k+1

 Following the arrival of the t-th online vertex
with £ =n(1—3) + 1, it holds that offline

e
vertices that will neighbor future online vertices

are matched to an average of

1
n(1—5)+1

(W) = z . —Zn:1>1 In— =1
fw) = n—k+1 k_n(n) ne_
’ k=1 k=2
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PROOF OF THEOREM

* So at step t, ﬁ w=t+1f (ur) =1, but

because f(u) <1 for all u € U, this means
that f(up,) =1forallk=t+1,..,n

e That 1s, the algorithm cannot match the
vertices Viyq, ..., Un

. ALGSn(1—§)+1 .
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