

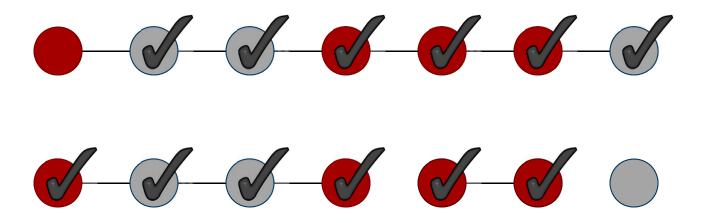
INCENTIVES

- A decade ago kidney exchanges were carried out by individual hospitals
- Today there are nationally organized exchanges; participating hospitals have little other interaction
- It was observed that hospitals match easy-tomatch pairs internally, and enroll only hard-tomatch pairs into larger exchanges
- Goal: incentivize hospitals to enroll all their pairs

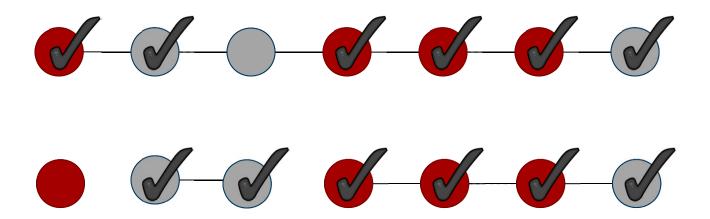
THE STRATEGIC MODEL

- Undirected graph (only pairwise matches!)
 - Vertices = donor-patient pairs
 - $_{\circ}$ Edges = compatibility
 - Each player controls subset of vertices
- Mechanism receives a graph and returns a matching
- Utility of player = # its matched vertices
- Target: # matched vertices
- Strategy: subset of revealed vertices
 - But edges are public knowledge
- Mechanism is strategyproof (SP) if it is a dominant strategy to reveal all vertices

OPT IS MANIPULABLE



OPT IS MANIPULABLE



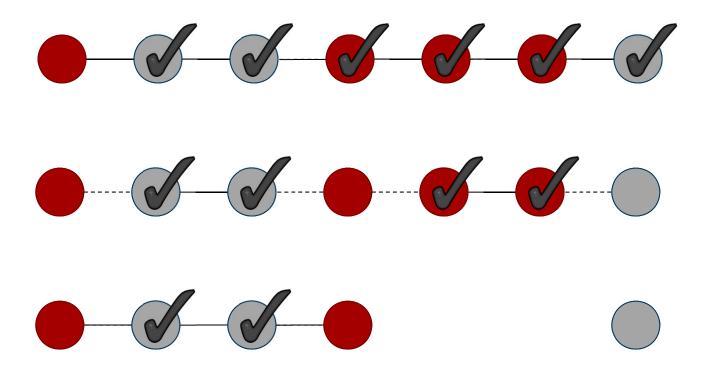
APPROXIMATING SW

- Theorem [Ashlagi et al. 2010]: No deterministic SP mechanism can give a 2ϵ approximation
- Proof: We just proved it!
- Theorem [Kroer and Kurokawa 2013]: No randomized SP mechanism can give a $\frac{6}{5} \epsilon$ approximation
- Proof: Homework 2

SP MECHANISM: TAKE 1

- Assume two players
- The MATCH $\{\{1\},\{2\}\}\}$ mechanism:
 - o Consider matchings that maximize the number of "internal edges"
 - Among these return a matching with max cardinality

ANOTHER EXAMPLE

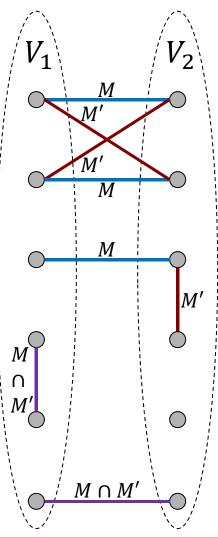


GUARANTEES

- $MATCH_{\{\{1\},\{2\}\}}$ gives a 2-approximation
 - Cannot add more edges to matching
 - For each edge in optimal matching, one of the two vertices is in mechanism's matching
- Theorem (special case): $MATCH_{\{\{1\},\{2\}\}}$ is strategyproof for two players

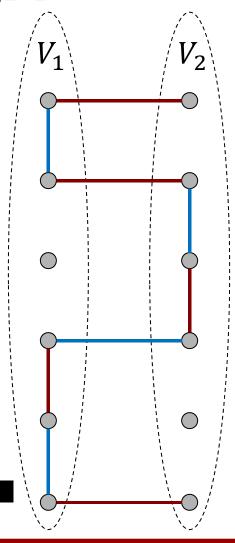
- M = matching when player 1 ishonest, M' = matching when player1 hides vertices
- $M\Delta M'$ consists of paths and evenlength cycles, each consisting of alternating M, M' edges

What's wrong with the illustration on the right?

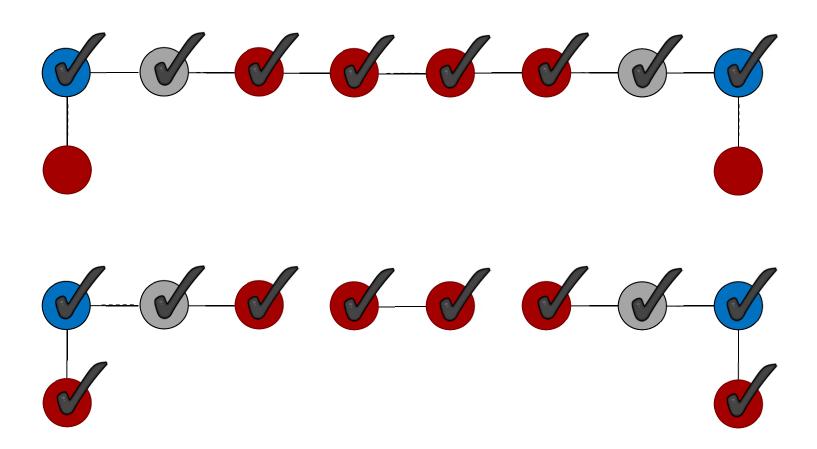


- Consider a path in $M\Delta M'$, denote its edges in M by P and its edges in M' by P'
- For $i, j \in \{1, 2\}$, $P_{i,i} = \{(u, v) \in P : u \in V_i, v \in V_i\}$ $P'_{i,i} = \{(u, v) \in P' : u \in V_i, v \in V_i\}$
- $|P_{11}| \ge |P'_{11}|$, suppose $|P_{11}| = |P'_{11}|$
- It holds that $|P_{22}| = |P'_{22}|$
- M is max cardinality $\Rightarrow |P_{12}| \geq |P'_{12}|$
- $U_1(P) = 2|P_{11}| + |P_{12}| \ge 2|P'_{11}| + |P'_{12}| = U_1(P')$

- Suppose $|P_{11}| > |P'_{11}|$
- $|P_{12}| \ge |P'_{12}| 2$
 - Every subpath within V_2 is of even length
 - We can pair the edges of P_{12} and P'_{12} , except maybe the first and the last
- $U_1(P) = 2|P_{11}| + |P_{12}| \ge 2(|P'_{11}| + 1) + |P'_{12}| 2 = U_1(P') \blacksquare$



THE CASE OF 3 PLAYERS



SP MECHANISM: TAKE 2

- Let $\Pi = (\Pi_1, \Pi_2)$ be a bipartition of the players
- The MATCH $_{\Pi}$ mechanism:
 - Consider matchings that maximize the number of "internal edges" and do not have any edges between different players on the same side of the partition
 - Among these return a matching with max cardinality (need tie breaking)

EUREKA?

- Theorem [Ashlagi et al. 2010]: MATCH $_{\Pi}$ is strategyproof for any number of players and any partition Π
- Recall: for n = 2, MATCH_{{{1},{2}}} guarantees a 2-approx

EUREKA?

Poll 1: approximation guarantees given by MATCH $_{\Pi}$ for n=3 and

$$\Pi = \{\{1\}, \{2,3\}\}$$
?

- *1.* 2
- *2.* 3
- *3.* 4
- 4. More than 4

THE MECHANISM

- The MIX-AND-MATCH mechanism:
 - Mix: choose a random partition Π
 - Match: Execute MATCH $_{\Pi}$
- Theorem Ashlagi et al. 2010: MIX-AND-Match is strategyproof and guarantees a 2-approximation
- We only prove the approximation ratio

- $M^* = \text{optimal matching}$
- Create a matching M' such that M' is max cardinality on each V_i , and

$$\sum_{i} |M'_{ii}| + \frac{1}{2} \sum_{i \neq j} |M'_{ij}| \ge \sum_{i} |M^*_{ii}| + \frac{1}{2} \sum_{i \neq j} |M^*_{ij}|$$

- $M^{**} = \max \text{ cardinality on each } V_i$
- For each path P in $M^*\Delta M^{**}$, add $P\cap M^{**}$ to M' if M^{**} has more internal edges than M^* , otherwise add $P \cap M^*$ to M'
- For every internal edge M' gains relative to M^* , it loses at most one edge overall

- Fix Π and let M^{Π} be the output of MATCH Π
- The mechanism returns max cardinality across Π subject to being max cardinality internally, therefore

$$\sum_{i} |M_{ii}^{\Pi}| + \sum_{i \in \Pi_{1}, j \in \Pi_{2}} |M_{ij}^{\Pi}| \ge \sum_{i} |M'_{ii}| + \sum_{i \in \Pi_{1}, j \in \Pi_{2}} |M'_{ij}|$$

$$\mathbb{E}[|M^{\Pi}|] = \frac{1}{2^{n}} \sum_{\Pi} \left(\sum_{i} |M_{ii}^{\Pi}| + \sum_{i \in \Pi_{1}, j \in \Pi_{2}} |M_{ij}^{\Pi}| \right)$$

$$\geq \frac{1}{2^{n}} \sum_{\Pi} \left(\sum_{i} |M_{ii}'| + \sum_{i \in \Pi_{1}, j \in \Pi_{2}} |M_{ij}'| \right)$$

$$= \sum_{i} |M_{ii}'| + \frac{1}{2^{n}} \sum_{\Pi} \sum_{i \in \Pi_{1}, j \in \Pi_{2}} |M_{ij}'|$$

$$= \sum_{i} |M_{ii}'| + \frac{1}{2} \sum_{i \neq j} |M_{ij}'| \geq \sum_{i} |M_{ii}^{*}| + \frac{1}{2} \sum_{i \neq j} |M_{ij}^{*}|$$

$$\geq \frac{1}{2} \sum_{i} |M_{ii}^{*}| + \frac{1}{2} \sum_{i \neq j} |M_{ij}^{*}| = \frac{1}{2} |M^{*}| \quad \blacksquare$$

