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We consider the problem of fairly allocating indivisible goods, focusing on a recently-introduced notion of
fairness called maximin share guarantee: Each player’s value for his allocation should be at least as high
as what he can guarantee by dividing the items into as many bundles as there are players and receiving
his least desirable bundle. Assuming additive valuation functions, we show that such allocations may not
exist, but allocations guaranteeing each player 2/3 of the above value always exist, and can be computed
in polynomial time when the number of players is constant. These theoretical results have direct practical
implications.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Fair division, Computational social choice

1. INTRODUCTION
We are interested the fair allocation of indivisible goods, but to explain the intricacies
of this problem we start from discussing the easier case of divisible goods. In the latter
setting, known as cake cutting, we need to divide a heterogeneous cake between players
with different valuation functions (that is, different players may have different values
for the same piece of cake).

When there are only two players, the Cut and Choose protocol provides a compelling
method for dividing a cake — and will play an important conceptual role later on.
Under this protocol, player 1 cuts the cake into two pieces that he values equally, and
player 2 subsequently chooses the piece that he prefers, giving the other piece to player
1. The resulting allocation is fair in a precise, formal sense known as envy-freeness:
Each player prefers his own allocation to the allocation of the other player. Envy-free
cake divisions exist for any number of players; today we know exactly how many cuts
are needed to achieve such allocations in the worst case [Alon 1987], and how to con-
structively find them [Brams and Taylor 1995] (although subtle complexity questions
remain open [Procaccia 2009; 2013]). It is interesting to note that — in the standard
cake-cutting setting — envy-freeness implies another natural fairness property called
proportionality: Each player in the set N receives a piece of cake whose value is at
least 1/|N | of the player’s value for the entire cake.

Cake cutting is a nice metaphor for real-world problems like land division; the study
of cake cutting distills insights about fairness that are useful in related settings, such
as the allocation of computational resources [Ghodsi et al. 2011; Parkes et al. 2012;
Procaccia 2013]. However, typical real-world situations where fairness is a chief con-
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cern, notably divorce settlements and the division of an estate between heirs, involve
indivisible goods (e.g., houses, cars, and works of art) — which in general preclude
envy-free, or even proportional, allocations. As a simple example, if there are several
players and only one indivisible item to be allocated, the allocation cannot possibly be
proportional or envy free. Foreshadowing the approach we take below, we note that no
allocation can be even approximately (in a multiplicative sense) fair according to these
notions, because some players receive an empty allocation of zero value.

So how can we divide an estate without lawyers? Potentially using an intriguing
alternative to classical fairness notions, recently presented by Budish [2011] (building
on concepts introduced by Moulin [1990]). Imagine that player 1 partitioned the items
into |N | bundles, and each player in N \{1} adversarially chose a bundle before player
1. A smart player would partition the bundles to maximize his minimum value for any
bundle. For the same reason we intuitively view the Cut-and-Choose protocol as fair
to player 1, even before specifying fairness axioms, the allocation that leaves player 1
with his least desired bundle seems fair to player 1 — as he is the one who divided the
items in the first place. Budish calls the value player 1 can guarantee in this way his
maximin share (MMS) guarantee.1 But an allocation based on the division of player 1
may make another player regret the fact that he was not the one to divide the items.
The question is: Can we allocate the items in a way that all players receive a bundle
worth at least as much as their MMS guarantee? This question was recently addressed
by Bouveret and Lemaı̂tre [2014], and while they were able to answer it for special
cases (which we list in §1.3), they left the general question open.

1.1. Model, Conceptual Contribution, and Technical Results
Denote the set of players by N and the set of indivisible items to be allocated by M.
Each player i is endowed with a valuation function vi : 2M → R+. We simplify notation
by writing vi(j) instead of vi({j}) for an item j ∈ M. We assume that the valuation
functions are additive:

∀S ⊆M, vi(S) =
∑
j∈S

vi(j).

This assumption is also made in most of the related work on fair division of indivisible
goods (see §1.3), including the paper of Bouveret and Lemaı̂tre [2014] that studies the
maximin share guarantee in the same setting. And, more importantly, people find it
difficult to specify combinatorial preferences, which is why some deployed implemen-
tations of fair division methods (see §1.2) rely on additive valuation functions. Finally,
our positive result does not hold under larger classes of valuation functions, e.g., sub-
additive and superadditive functions.

For a set S ⊆ M, let Πn(S) be the set of n-partitions of S. Define the n-maximin
share (n-MMS) guarantee of player i ∈ N as

MMS(n)
i (S) = max

(T1,...,Tn)∈Πn(S)
min
j∈[n]

vi(Tj),

where [n] = {1, . . . , n}; we call a partition that realizes this value player i’s n-maximin
partition of S. The valuation function used to determine a player’s MMS guarantee will
be clear from the context. An allocation (A1, . . . , A|N |) ∈ Π|N |(M) allocates the subset
of items Ai to each player i. We say that (A1, . . . , A|N |) is a maximin share (MMS)

1This term should not be confused with the terminology of the systems literature, where max-min fairness
simply refers to maximizing the value any player receives [Demers et al. 1989] rather than an axiomatic
notion of fairness.



allocation if and only if

∀i ∈ N , vi(Ai) ≥MMS(|N |)
i (M).

Our first result is negative:

Theorem 2.1. For any set of players N such that |N | ≥ 3 there existM and (additive)
valuation functions that do not admit an MMS allocation.

We find this theorem surprising because extensive automated experiments by sev-
eral groups of researchers (including us) have failed to find a counterexample. Indeed,
the counterexample relies on a very precise construction. In §2 we first provide an
explicit counterexample for the case of three players (relying on a Sudoku-like con-
struction) that illustrates the key ideas, and then give the full proof.

While it seems that MMS allocations almost always exist, we wish to relax this fair-
ness notion in order to guarantee existence. Fortunately, unlike other fairness notions
such as envy-freeness and proportionality, the MMS guarantee supports a multiplica-
tive notion of approximation. Our main question is:

Is there a constant c > 0 such that we can always find an allocation A1, . . . An
that satisfies vi(Ai) ≥ c ·MMS(|N |)

i (M)?

We answer this question in the positive for c = 2/3:

Theorem 3.1. Let there be |N | ≥ 1 players and a set of itemsM. Then there exists an
allocation A1, . . . , A|N | such that for all i ∈ N , vi(Ai) ≥ 2

3MMS(|N |)
i (M) . Moreover, such

an allocation can be found in polynomial time if |N | is constant.

In fact, we prove a slightly stronger approximation ratio that converges to 2/3 as
|N | goes to infinity; for the important cases of three and four players, the ratio is 3/4.
Our technical approach relies on an intricate lemma — the Density Balance Lemma
— which relates the value of a subset of items to the value of its complement. We
use the lemma to design an exponential-time recursive algorithm (in §3.1), which lets
one of the players compute a maximin partition (an NP-hard problem), and creates a
bipartite graph between players and bundles where an edge exists if a bundle satisfies
the player. We show (using Hall’s Theorem) that a perfect matching exists between a
nonempty subset of the players and some of the bundles. The algorithm then recurses
on the remaining players and items. In §3.2 we show that the algorithm can be adapted
to run in polynomial time if the number of players is constant, by leveraging a result
of Woeginger [1997].

1.2. Practical Applications of Our Results
The theory of fair division has been extensively studied, as shown, e.g., by the books
by Moulin [2003] and Brams and Taylor [1996]. Despite the abundance of extremely
clever fair division algorithms, very few have been implemented. Budish’s [2011] work
is a rare example; his method is currently used for MBA course allocation at the Whar-
ton School of the University of Pennsylvania. Another example is the adjusted winner
method [Brams and Taylor 1996], which assumes that there are exactly two players
(with additive valuation functions). Adjusted winner has been patented by NYU and
licensed to Fair Outcomes, Inc. It can be used at a free NYU website.2

One of us (Procaccia) has been leading an effort to change this situation by building
a not-for-profit fair-division website, tentatively called Spliddit; its purpose is to edu-
cate the public, gather data on fair division, and hopefully make the world just a bit

2http://www.nyu.edu/projects/adjustedwinner/



fairer. The website — spliddit.org — contains implementations of mechanisms for
rent division [Abdulkadiroğlu et al. 2004] and assignment of scientific credit [de Clip-
pel et al. 2008]. However, for the third application — dividing indivisible goods — we
were unable to find satisfactory methods for more than two players, despite discus-
sions with leading experts on fair division such as Steven Brams and Hervé Moulin
(we survey some existing methods in §1.3). This provided strong motivation for the
theoretical work reported here.

The approach we ultimately implemented relies heavily on Theorem 3.1. We consider
three “levels” of fairness: envy-freeness, proportionality, and (approximate) MMS guar-
antee. It is easy to verify that each of these fairness notions implies the ones following
it. Users specify their valuation functions by distributing a fixed pool of points between
the items. We then find an allocation that maximizes social welfare —

∑
i∈N vi(Ai) —

subject to the strongest feasible fairness constraint (using an integer linear program-
ming formulation, which is solved via CPLEX). For MMS, we maximize the value of
c for which the c-MMS guarantee is feasible. By Theorem 3.1, achieving 2/3 of the
MMS guarantee is always feasible, so the theorem ensures an outcome that is, well,
fair enough. In our view, this method is (arguably) the most compelling method to date
for fair division settings involving indivisible goods and more than two players.

1.3. Related Work
Motivated by the problem of allocating courses to students, Budish [2011] studies a
solution concept that he calls approximate competitive equilibrium from equal incomes
(CEEI). Budish shows the existence of an approximate CEEI (with certain approxi-
mation parameters), even when the preferences of players are unrestricted (so they
may correspond to any combinatorial valuation functions). Roughly speaking, an ap-
proximate CEEI guarantees that vi(Ai) ≥ MMS(|N |+1)

i (M), that is, each of the |N |
players receives its (|N |+ 1)-MMS guarantee. However, this result takes advantage of
an approximation error in the items that are allocated (some items might be in excess
demand or excess supply). The approximation error grows with the overall number
of items, and with the number of items demanded by each player, but not with the
number of players or the number of copies of each item. Therefore, as the two latter
parameters go to infinity, the error goes to zero. A large economy, in this sense, is plau-
sible in the context of MBA course allocation, because there are many MBA students,
many seats in each course, but relatively few courses that are offered, and even fewer
courses a single student can take. But Budish’s results do not provide practical guar-
antees when there are, say, three or four players, and (very possibly) only one copy of
each item — which is the setting we are interested in.

Like us, Bouveret and Lemaı̂tre [2014] focus on the division of indivisible goods be-
tween players with additive valuations. They study a hierarchy of fairness properties,
of which the maximin share guarantee is the weakest (it is easy to see that allocations
satisfying the other properties may not exist). Among other results, they show that
MMS allocations exist in the following cases: (i) valuations for items are 0 or 1; (ii) the
values different players assign to items form identical multisets; and (iii) |M| ≤ |N |+3.
They also present results from extensive simulations using different distributions over
item values; MMS allocations exist in each and every trial.

Also related is the work of Lipton et al. [2004]. Among other results, they give a
polynomial-time algorithm that computes approximately envy-free allocations, where
the approximation is additive. Specifically, they let α be the largest possible increase in
value a player can have from adding one item to his bundle, and produce an allocation
such that vi(Ai) ≥ vi(Aj) − α for all i, j ∈ N . This interesting result may not be very
practical; for example, if one of the items is extremely valuable, the players would not



be guaranteed anything. In contrast, assuming items have positive values, an MMS
allocation (or any multiplicative approximation thereof) gives some player a bundle
worth zero (if and) only if any allocation gives some player a bundle worth zero.

Hill [1987] shows that when valuations are additive, indivisible items can be allo-
cated in a way that a certain value is guaranteed to each player; and Markakis and
Psomas [2011] refine this guarantee and construct a polynomial time algorithm that
achieves it. However, the guaranteed value is defined using an unwieldy function that
depends on the number of players as well as on the value of the most valuable item,
and even for three players the function’s value quickly goes down to zero as the most
valuable item becomes more valuable.

When there are exactly two players, practical methods for dividing indivisible goods
are available. For example, recent work by Brams et al. [2014] gives a method satisfy-
ing several desirable properties, including envy-freeness; its main shortcoming is that
it may not allocate all items (it generates a “contested pile” of unallocated items). The
adjusted winner method [Brams and Taylor 1996], mentioned above, is another prac-
tical method (which is routinely being used, as discussed in §1.2) — but it implicitly
assumes that the items are divisible and would typically require splitting one of the
items. In any case, for more than two players, one encounters a great many paradoxes
when contemplating standard fairness notions [Brams et al. 2003]. Moreover, general-
izing these practical 2-player protocols is impossible; for example, adjusted winner can
be interpreted as a special case of the egalitarian equivalent [Pazner and Schmeidler
1978] rule (for two players and additive valuation functions), but the latter method
strongly relies on divisibility and may end up splitting all goods.

From an algorithmic viewpoint, our work is related to papers on the problem of
allocating indivisible goods to maximize the minimum value any player has for his
bundle (under additive valuation functions) — also known as the Santa Claus prob-
lem [Bezáková and Dani 2005; Bansal and Sviridenko 2006; Asadpour and Saberi
2007]. Woeginger [1997] studies the special case of players with identical valuations,
and presents a polynomial time approximation scheme that we leverage below.

Somewhat further afield, recent years have seen quite a bit of computational work
on cake cutting; see [Procaccia 2013] for an overview. One question that received some
attention from the theoretical computer science community is the complexity of pro-
portional and envy-free cake cutting in a concrete complexity model [Magdon-Ismail
et al. 2003; Edmonds and Pruhs 2006b; 2006a; Woeginger and Sgall 2007; Procaccia
2009]

1.4. Open Problems
One obvious question remains open. Theorem 2.1 does not provide an upper bound on
the the constant c > 0 such that c-MMS allocations always exist, and even the three-
player construction in §2 provides a very weak upper bound. Our lower bound, given
by Theorem 3.1, is 2/3. Lemma 3.2 shows that our technical approach cannot give a
better lower bound. Narrowing this gap is, in our view, an important challenge.

As noted above, Budish [2011] introduced a different notion of MMS approximation.
In its ideal form, we would ask for an allocation such that vi(Ai) ≥MMS(|N |+1)

i (M). We
have designed an algorithm that achieves this guarantee for the case of three players
(it is already nontrivial). Proving or disproving the existence of such allocations for a
general number of players remains an open problem; a positive result would provide a
compelling alternative to Theorem 3.1.

Finally, our negative result, Theorem 2.1, requires a number of items that is expo-
nential in the number of players. In contrast, if the number of items is only slightly
larger than the number of players, an MMS allocation is guaranteed to exist [Bouveret



and Lemaı̂tre 2014]. What is the largest number of items for which an MMS allocation
is guaranteed to exist?

2. NONEXISTENCE OF EXACT MMS ALLOCATIONS
In this section we will show that, in general, MMS allocations are not guaranteed to
exist (even under our assumption of additive valuation functions). But, to give some
context for this result, let us briefly discuss a case where they do exist. As pointed
out by Bouveret and Lemaı̂tre [2014], when there are two players we can achieve an
MMS allocation — essentially via an indivisible analog of the Cut and Choose protocol.
Indeed, let player 1 divide the items according to his 2-maximin partition S1, S2, i.e.,
the partition that maximizes minj∈[2] v1(Sj). Allocate to player 2 his preferred subset,
and give the other subset to player 1. Player 1 clearly achieves his MMS guarantee,
but what about player 2? By the additivity of v2, there exists j ∈ [2] such that v2(Sj) ≥
v2(M)/2. In addition, in any partition S′1, S

′
2 there exists k ∈ [2] such that v2(S′k) ≤

v2(M)/2, hence MMS(2)
2 (M) ≤ v2(M)/2. It follows that there exists j ∈ [2] such that

v2(Sj) ≥MMS(2)
2 (M).

In contrast, MMS allocations may not exist when the number of players is at least
three.

THEOREM 2.1. For any set of players N such that |N | ≥ 3 there existM and (addi-
tive) valuation functions that do not admit an MMS allocation.

In a nutshell, to prove the theorem, the players’ valuation functions are defined
using three matrices. One of these matrices is called the oscillation matrix, and its
elements are chosen to satisfy a system of linear equalities and inequalities that guar-
antees that only very specific subsets of the elements sum up to 1. We then show that
valid MMS allocations must include bundles of items whose values in the oscillation
matrix sum up to 1, but (by perturbing players’ values using an epsilon matrix) this
precludes allocations that satisfy all players’ MMS guarantees.

We prove Theorem 2.1 in §2.1, but, as the proof is rather intricate, we first illustrate
the main ideas of our general construction by presenting an explicit counterexample
construction for the case of three players. Let the set of items beM = {(j, k) | j ∈ [3], k ∈
[4]}. The valuation functions of the three players are defined using the following five
matrices: the base matrix

B =

[
1 1 1 1
1 1 1 1
1 1 1 1

]
,

the oscillation Matrix

O =

[
17 25 12 1
2 22 3 28
11 0 21 23

]
,

and three epsilon matrices:

E(1) =

[
3 −1 −1 −1
0 0 0 0
0 0 0 0

]
E(2) =

[
3 −1 0 0
−1 0 0 0
−1 0 0 0

]
E(3) =

[
3 0 −1 0
0 0 −1 0
0 0 0 −1

]
For each item (j, k) ∈M, we let

vi({(j, k)}) = 106 ·Bjk + 103 ·Ojk + E
(i)
jk .

Our first goal is to compute the 3-MMS guarantee of each player. To this end, we will
find it convenient to label each element of the oscillation matrix O with three of nine



possible labels (1, 2, 3, α, β, γ,+,−, ∗): α171
+

α251
−

β121
+

γ11
∗

α22
−

β222
∗

γ32
+

γ282
−

α113
∗

β03
−

β213
∗

γ233
+


The oscillation matrix has the following Sudoku-like property: For each label there are
exactly four elements with that label, and the sum of these 4 elements is exactly 55.
Moreover, any four elements whose sum is 55 must have the same label.

This observation facilitates a straightforward computation of MMS guarantees.
Player 1 can divide the 12 items into three subsets: a subset consisting of the four
elements labeled with 1 (the first row), a subset consisting of the four elements labeled
by 2 (the second row), and a subset consisting of the four elements labeled by 3 (the
third row). For each subset, the sum of its four elements in B, O and E1 is 4, 55 and 0

respectively. Hence, MMS(3)
1 (M) = 4 · 106 + 55 · 103 + 0 = 4055000. Player 2’s maximin

partition is obtained by dividing the items into three subsets according to the labels
α, β and γ, and player 3’s maximin partition corresponds to the labels +,− and ∗; all
MMS guarantees are 4055000.

We next characterize MMS allocations ofM, with the goal of showing that no such
allocations exist. First note that a valid MMS allocation of M must allocate at least
four items to each player. Indeed, for any bundle S ⊆ M such that |S| = 3 and each
player i = 1, 2, 3, vi(S) ≤ 3 ·106 +76∗103 +3 < 4055000. Because there are twelve items,
each player must receive exactly four items.

We now claim that in an MMS allocation each player must receive four items with
the same label. Indeed, as noted above, the only bundles whose values in O add up to
55 consist of four items with identical labels. Suppose that a player is allocated four
items with different labels. Since the sum of all the elements in O is 165 = 55×3, there
must be a player with four items whose sum in O is less than 55. This player’s value is
at most 4 · 106 + 54 · 103 + 3 < 4055000.

It is easy to verify that there are only three ways to divide M into three subsets
such that the items in each subset have identical labels: (i) dividing according to the
labels 1, 2, 3; (ii) according to the labels α, β, γ; and (iii) according to the labels +,−
and ∗. But all three ways will fail to give some player his MMS guarantee of 4055000.
Indeed, in case (i), there is a player i1 ∈ {2, 3} who is allocated items labeled by 2 or
3. The sum of the corresponding elements in E(i1) is −1, hence the value i1 obtains
is 4 · 106 + 55 · 103 − 1 = 4054999 < 4055000. In case (ii), a player i2 ∈ {1, 3} must be
allocated a subset of items labeled with β or γ; and in case (iii), a player i3 ∈ {1, 2}
must be allocated a subset of items labeled with − or ∗. By the same reasoning as in
case (i), in cases (ii) and (iii) player il, l = 2, 3, ends up with value at most 4054999. We
conclude that it is impossible to satisfy the MMS guarantees of all three players.

2.1. Proof of Theorem 2.1
Let n = |N |. We construct a counterexample by defining the set of items M = [n]n.
Each item is associated with a vector

t = (t1, t2, ..., tn) ∈M,

that is, ti ∈ [n] for all i ∈ [n]. Let

Si,j = {t ∈M|ti = j }

We also let X be the collection of all such subsets, i.e.,

X = {Si,j |i, j ∈ [n]} ,



and use this to define

Y =
{
T ⊆M

∣∣|T | = nn−1, T /∈ X
}
.

Now consider the following system of linear equalities and linear inequalities,

∀T ∈ X ,
∑
t∈T

xt = 1

∀T ∈ Y,
∑
t∈T

xt 6= 1
(1)

We claim that the system has at least one solution x; this claim is proved later on.
Currently we use such a solution x to construct the counterexample.

For two sets V,U ⊆ M, where |V | = d, let 〈U |V 〉 =
∑
u∈U∩V eVu be a d-dimensional

vector, where eVu = (0, ..., 1, ..., 0) ∈ Rd is the ith unit vector, in which i is the position of
element u in V according to a fixed order. Specifically, we sort V ’s elements in increas-
ing lexicographic order, i.e., t appears before t′ if in the leftmost position i where the
two vectors differ, ti < t′i. This ensures that 〈U |V 〉 is well defined for any U .

Our construction is based on the following vectors:

— Base vector: b = (1, 1, ..., 1)
ᵀ ∈ Rnn

.
— Oscillation vector: x.
— Epsilon vector for player i:

pi = (1, 0, 0, ..., 0)
ᵀ − n1−n 〈Si,1 |M〉 ,

where the left vector on the right hand side has 1 in the position corresponding to
item (1, . . . , 1).

We also let

λ = min
T∈Y
|〈T |M〉ᵀx− 1| > 0.

Using these notations, we set the utility function of player i ∈ [n] by defining it as a
vector, with an entry for each of the nn items:

ui = nb + x +
1

2
n1−nλpi.

Correctness of the Construction. We first claim that when the utility functions are
u1, . . . ,un, the nn items cannot be allocated so that each player achieves his MMS guar-
antee. We start by giving a lower bound on each player’s n-MMS guarantee. Suppose
that player i divides the items into n subsets Si,1, . . . , Si,n. Then for all j ∈ [n],

vi (Si,j) =
∑

t∈Si,j

vi(t) =
∑

t∈Si,j

(n+ xt) + [j = 1] · 1

2
n1−nλ

1−
∑

t∈Si,j

n1−n

 = nn + 1,

where the second equality follows from the fact that pi is only nonzero in positions
corresponding to Si,1. We conclude that the n-MMS guarantee of each player is at least
nn + 1.

LEMMA 2.2. Any n-MMS allocation must allocate exactly nn−1 items to each player.

PROOF. Suppose there is a player that is allocated at most nn−1 − 1 items, then his
utility is less than

(
nn−1 − 1

)
n +

∑
t∈M xt + 1 = nn + 1, which violates his n-MMS

guarantee. The lemma now follows from the fact there is a total of nn items.



LEMMA 2.3. Any n-MMS allocation must allocate a set in X to each player.

PROOF. By Lemma 2.2, each player is allocated exactly nn−1 items. Suppose for
contradiction that one player acquires nn−1 elements T such that T /∈ X . The con-
straints of the linear system (1) for which x is a solution imply that

∑
t∈T xt 6= 1. Since∑

t∈M xt = n, there must be a player i who receives a set T ′, |T ′| = nn−1, such that∑
t∈T ′ xt < 1. By the definition of λ, the value player i obtains from the x component

of his utility function is
∑

t∈T xt ≤ 1 − λ. Therefore, the allocation of player i is worth
at most

nnn−1 + 1− λ+
1

2
n1−nλ · 1 · nn−1 = nn + 1− 1

2
λ < nn + 1,

contradicting the lower bound on the n-MMS guarantee.

LEMMA 2.4. For any n-MMS allocation there exists i ∈ N such that the allocation
forms the partition Si,1, Si,2, ..., Si,n.

PROOF. By Lemma 2.3, players can only obtain a set of items that forms an element
of Xn. Now consider the case that player 1 obtains a set of items represented by Si,j ;
no other player receives the bundle Si′,j′ where i 6= i′, since Si,j ∩ Si′,j′ 6= ∅ when i 6= i′.
At the same time, Si,1, Si,2, ..., Si,n forms a legal n-partition.

LEMMA 2.5. There is no n-MMS allocation ofM.

PROOF. By Lemma 2.4, a valid n-MMS allocation must be based on the n-partition
Si,1, Si,2, . . . , Si,n. Suppose player j obtains the item bundle Si,1. Since there are at least
three players, there is a player k that k 6= i and k 6= j. For any bundle Si,l where l 6= 1,
the value player k obtains when allocated the bundle Si,l is smaller than nnn−1 + 1,
because there exist elements corresponding to Si,l in pi that are negative, and the other
elements are zero. It follows that player k does not achieve his n-MMS guarantee.

Proof of Solution Existence. In the rest of the proof we show that the linear sys-
tem (1) indeed has a solution. We first introduce some notation. Consider a system of
linear equations Ax = b where A = [a1,a2, ...,am]

ᵀ, b ∈ Rm, and a1, ...,am ∈ Rn. Let

U = {u ∈ Rn |∀y ∈ Rm, Aᵀy 6= u} ,
and let A−1(b) = {x ∈ Rn |Ax = b}.

LEMMA 2.6. If A−1 (b) 6= ∅ then for all u ∈ Uk and c ∈ Rk there exists x ∈ A−1 (b)
such that for all i ∈ [k], uᵀ

i x 6= ci.

PROOF. Suppose for contradiction that A−1 (b) 6= ∅ but there exist u ∈ Uk and
c ∈ Rk such that for all x ∈ A−1 (b) there exists i ∈ [k] such that uᵀ

i x = ci.
Let r be the dimension of the kernel of A. We can find an orthogonal basis

x1, ...,xr,xr+1, ...,xn for Rn such that for each i ∈ [r], Axi = 0. Then,

span (xr+1, ...,xn) = span (a1, ...,am) ,

where span(S) is the span of a set of vectors S, i.e.,

span (S) =

{∑
i

λivi |λi ∈ R, vi ∈ S

}
.

Using our assumption that A−1(b) 6= ∅, let x0 such that Ax0 = b. We can express
the solution of this system using x0 and a linear combination of x1,x2, · · · ,xr, i.e., each
vector x = x0 + [x1, . . . ,xr]y, where y ∈ Rr, satisfies Ax = b.



Next, we define a collection of r-dimensional vectors by yi = (i, i, ..., i)
ᵀ for i =

1, . . . , k + 1. By the assumption,

∀y ∈ {y1,y2, ...,yk+1} ,∃i ∈ [k],uᵀ
i (x0 + [x1, . . . ,xr]y) = ci.

By the pigeonhole principle, there exist i ∈ [k] and p > q ∈ [k + 1] such that

uᵀ
i (x0 + [x1, . . . ,xr]yp) = ci

and

uᵀ
i (x0 + [x1, . . . ,xr]yq) = ci.

It follows that

uᵀ
i [x1, . . . ,xr] (yp − yq) = 0.

Since yp−yq is strictly positive in every coordinate, it holds that for all j ∈ [r], uᵀ
i xj = 0,

that is, ui⊥span (x1, ...,xr). We conclude that

ui ∈ span (xr+1, ...,xn) = span (a1, ...,am) ,

and hence there exists a vector y ∈ Rm such that Aᵀy = ui, so ui /∈ U — contradicting
the assumption that u ∈ Uk.

LEMMA 2.7. For all T ∈ Y,

〈T |M〉 /∈ span ({〈T ′ |M〉 |T ′ ∈ X }) .
PROOF. The lemma is equivalent to claiming that for m = n,

∀T ∈ Y, 〈T |M〉 /∈ span ({〈Si,j |M〉 |i ∈ [m], j ∈ [n]}) .
We prove this claim by induction on m. The case of m = 1 is trivial.

Assume the claim holds for m − 1; we prove it for m. Assume for contradiction that
there exists T ∈ Y such that

〈T |M〉 ∈ span ({〈Si,j |M〉 |i ∈ [m], j ∈ [n]}) .
Then we can find numbers λi,j such that

〈T |M〉 =
∑

i∈[m−1],j∈[n]

λi,j 〈Si,j |M〉+
∑
j∈[n]

λm,j 〈Sm,j |M〉.

Next, define the vectors β1, . . . , βn as

βl =
∑

i∈[m−1],j∈[n]

λi,j 〈Si,j |Sm,l 〉

for all l ∈ [n]. Note that the summation is only over i ∈ [m − 1], and for i ∈ [m − 1]
and j, l1, l2 ∈ [n], 〈Si,j |Sm,l1 〉 = 〈Si,j |Sm,l2 〉. It follows that for all l ∈ [n], βl = β.
Furthermore,

〈Sm,j |Sm,l 〉 =

{
(1, . . . , 1) j = l
(0, . . . , 0) j 6= l.

Therefore, letting γ = (1, . . . , 1) and µl = λm,l, we can write

ωl = 〈T |Sm,l 〉 = β + µlγ.

We consider two cases:



Case 1: There exist l1 6= l2 ∈ [n] such that µl1 < µl2 . Since ωl1 and ωl2 are 0-1 vectors,
and γ = (1, . . . , 1), this can only happen when ωl1 = (0, . . . , 0) and ωl2 = (1, . . . , 1) = γ. In
addition, T ∈ Y, therefore |T | = nn−1. It follows that T = Sm,l2 ∈ X — a contradiction
to the assumption that T ∈ Y.

Case 2: For all l1, l2 ∈ [n], µl1 = µl2 = µ. In this case, it holds that

〈T |M〉 =
∑

i∈[m−1],j∈[n]

λi,j 〈Si,j |M〉+ µ
∑
j∈[n]

〈Sm,j |M〉

=
∑

i∈[m−1],j∈[n]

λi,j 〈Si,j |M〉+ µ
∑
j∈[n]

〈S1,j |M〉

=
∑

i∈[m−1],j∈[n]

λ′i,j 〈Si,j |M〉,

where the second equality follows from the fact that∑
j∈[n]

〈Sm,j |M〉 = 〈M |M〉 =
∑
j∈[n]

〈S1,j |M〉,

and for the last equality we define λ′i,j = λi,j + µ [i = 1]. Since the summation on the
right hand side does not include i = m, it follows that

〈T |M〉 ∈ span ({〈Si,j |M〉 |i ∈ [m− 1], j ∈ [n]}) .

By the induction assumption, T /∈ Y — a contradiction to the assumption that T ∈
Y.

To complete the theorem’s proof, recall that there are n2 different sets in X , and
denote

X =
{
T (1), T (2), ..., T (n2)

}
.

We introduce the matrix

A =
[〈
T (1) |M

〉
,
〈
T (2) |M

〉
, ...,

〈
T (n2) |M

〉]ᵀ
.

As in the beginning of this subsection, we denote

U = {u ∈ Rn |∀y ∈ Rm, Aᵀy 6= u}

=
{
u ∈ Rn

∣∣∣u /∈ span
(〈
T (1) |M

〉
,
〈
T (2) |M

〉
, ...,

〈
T (n2) |M

〉)}
= {u ∈ Rn |u /∈ span (〈T ′ |M〉 |T ′ ∈ X )} ⊇ {〈T ′ |M〉 |T ′ ∈ Y } ,

where the containment follows from Lemma 2.7. Let b = (1, 1, ..., 1); it is easy to see
that A−1(b) 6= ∅, because we can set xt = n1−n for all t ∈ M. By Lemma 2.6, it follows
that there is a solution x such that Ax = b and for all T ∈ Y, 〈T |M〉ᵀx 6= 1. This
completes the proof of Theorem 2.1.

3. EXISTENCE AND COMPUTATION OF APPROXIMATE MMS ALLOCATIONS
To circumvent Theorem 2.1 we introduce a new notion of approximate maximin
share guarantee: rather than asking for an allocation A1, . . . , A|N | such that vi(Ai) ≥
MMS(|N |)

i (M) for all i ∈ N , we look for allocations such that vi(Ai) ≥ c ·MMS(|N |)
i (M)

for a constant c > 0. Our main result is that such allocations always exist when c = 2/3.



THEOREM 3.1. Let there be |N | ≥ 1 players and a set of itemsM. Then there exists
an allocation A1, . . . , A|N | such that for all i ∈ N , vi(Ai) ≥ 2

3MMS(|N |)
i (M). Moreover,

such an allocation can be found in polynomial time if |N | is constant.

At the center of our technical approach lies the density balance parameter. Intu-
itively, the smaller a subset’s value, the higher the value of its complement — in this
sense we are interested in the balance between the two. Formally, the N -density bal-
ance parameter ρN is given by

ρN = max

{
λ

∣∣∣∣∣ ∀M,∀additive vi ∈ (R+)
2M

,∀S ⊆M,∀n,m s.t. n+m = N,

vi (M\S) ≤ mλMMS(N)
i (M)⇒MMS(n)

i (S) ≥ λMMS(N)
i (M)

}

The crucial point is that, if there are |N | = N players and v (M\S) ≤ mλMMS(N)
i (M),

giving player i any subset in his n-maximin partition of S (that is, his maximin parti-
tion if there were only n players and the available items were S) would be sufficient to
guarantee a ρN fraction of his N -player MMS guarantee.

Our most significant technical tool is the following lemma, which uses bNcodd =
N − 1 + (N mod 2) to denote the largest odd N ′ such that N ′ ≤ N .

LEMMA 3.2 (DENSITY BALANCE LEMMA). For all N ≥ 2,

ρN =
2bNcodd

3bNcodd − 1
≥ 2

3
.

The lemma’s intricate proof is given in §3.3 (and the appendix). But if we believe the
lemma for now, to prove Theorem 3.1 it is sufficient to guarantee each player ρ|N | ≥ 2/3
of his |N |-MMS guarantee. Importantly, this gives a stronger guarantee for a small
number of players, and in particular for the cases of three and four players we get a
(3/4)-approximation.

We prove the theorem in two steps. First, we disregard time complexity issues and
establish that a ρ|N |-approximation is always feasible by constructing a exponential-
time algorithm. Then, we explain how to convert the algorithm into a polynomial-time
algorithm (assuming the number of players is constant).

3.1. An Exponential-Time Algorithm
Our goal is to construct an algorithm APX-MMS (n,N, S,M), where N = |N |, by in-
duction on n. The algorithm allocates the items S ⊆ M to n players denoted (for ease
of exposition) by [n], and guarantees each player a value of at least ρNMMS(N)

i (M), if
the following assumption holds:

∀i ∈ [n], vi (M\S) ≤ (N − n)ρNMMS(N)
i (M) . (2)

A subtle point is that while we build the algorithm from the bottom up, we also have to
make sure that we satisfy Equation (2) when we recurse on a smaller subset of players
— and we must make sure that this inequality holds when we first call the algorithm
(we will do so later).

For n = 1 — the base of the induction — APX-MMS (1, N, S,M) allocates S to the
single player, denoted by 1. Note that for all i ∈ N , vi(M) ≥ N ·MMS(N)

i (M), and since
we are assuming that

v1 (M\S) ≤ (N − 1)ρNMMS(N)
1 (M) ≤ (N − 1)MMS(N)

1 (M) ,

it follows that v1(S) ≥MMS(N)
1 (M) ≥ ρNMMS(N)

1 (M).
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(a) The sets X+, X−, Y +, and Y −.
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(b) The perfect matching between X∗

and a subset of Y −.

Fig. 1. An illustration of the proof of Theorem 3.1, with n = 5. Vertices in X (corresponding to players) are
circles and vertices in Y (corresponding to subsets) are squares. Note that 1 ∈ X has an edge to every j ∈ Y .

Now, suppose that for all n ≤ n′ we have an algorithm APX-MMS (n,N, S,M)

that guarantees each of the n players a value of at least ρNMMS(N)
i (M) if

Equation (2) holds. Our task in the following paragraphs is the construction of
APX-MMS (n,N, S,M) where n = n′ + 1. APX-MMS (n,N, S,M) starts out by com-
puting an n-maximin partition of S with respect to player 1, denoted S1, S2, ..., Sn.
Using (2) we have that v1 (M\S) ≤ (N − n)ρNMMS(N)

1 (M). By the definition of
ρN , MMS(n)

1 (S) ≥ ρNMMS(N)
1 (M). This means that for all j ∈ [n], v1(Sj) ≥

ρNMMS(N)
1 (M).

The next step is to draw an undirected bipartite graph G = (V,E) where V is com-
posed of two subsets of vertices X = Y = [n], and

E =
{

(i, j) |i ∈ X, j ∈ Y, vi (Sj) ≥ ρNMMS(N)
i (M)

}
.

Furthermore, for any subset Γ ⊆ Y , define the function fΓ that maps subsets Z ⊆ X to
their neighbors in Y :

fΓ (Z) =
⋃
i∈Z
{j ∈ Γ |(i, j) ∈ E }.

Finally, we denote

X+ = arg max
Z⊆{2,3,...,n}

{|Z| | |Z| ≥ |fY (Z)| } ,

X∗ = X\X+, X− = X∗\ {1}, Y + = fY (X+), and Y − = Y \Y + (see Figure 1(a) for an
illustration).

LEMMA 3.3. There exists a perfect matching between X∗ and a subset of Y −.

PROOF. We prove the lemma using Hall’s Theorem. We need to show that

∀Z ⊆ X∗, |Z| ≤ |fY − (Z)| . (3)

We first prove a restricted version of Equation (3) for subsets Z ⊆ X−, that is,

∀Z ⊆ X−, |Z| ≤ |fY − (Z)| . (4)



To see this, assume for contradiction that there exists Z0 ⊆ X− such that |Z0| >
|fY − (Z0)|; then∣∣X+ ∪ Z0

∣∣ =
∣∣X+

∣∣+ |Z0| >
∣∣fY (X+

)∣∣+ |fY − (Z0)| ≥
∣∣fY (X+

)
∪ fY − (Z0)

∣∣
=
∣∣fY (X+ ∪ Z0

)∣∣ .
This contradicts the definition of X+ as the largest subset of {2, . . . , n} whose cardinal-
ity is larger than that of its neighbors in Y , and establishes Equation (4).

We next expand Equation (4) to all Z ⊆ X∗. Since X∗ = X− ∪ {1}, all subsets of X∗
can be represented as Z or Z ∪ {1} for Z ⊆ X−. For any subset Z ⊆ X−, we have that
|Z| ≤ |fY − (Z)| by Equation (4). We have already argued that v1(Sj) ≥ ρNMMS(N)

1 (M)
for all j ∈ [n], meaning that (1, j) ∈ E for all j ∈ [n]. Therefore

|Z ∪ {1}| ≤ |X∗| = n−
∣∣X+

∣∣ ≤ n− ∣∣Y +
∣∣ =

∣∣Y −∣∣ = |fY − ({1})| ≤ |fY − (Z ∪ {1})| ,
establishing Equation (3) and completing the lemma’s proof.

By Lemma 3.3 there exists a perfect matching between X∗ and a subset of Y − (see
Figure 1(b) for an illustration). Mark the matched subset in Y − as Y ∗. If i ∈ X∗ is
matched to j ∈ Y ∗, APX-MMS (n,N, S,M) will allocate subset Sj to player i.

To complete the allocation, let S∗ be the subset of items that have not been allocated
above, i.e., S∗ =

⋃
j∈Y \Y ∗ Sj . Since Y ∗ ⊆ Y − = Y \fY (X+), for any i ∈ X+ and j ∈ Y ∗,

(i, j) /∈ E, that is, vi (Sj) < ρNMMS(N)
i (M). Therefore, for any player i ∈ X+,

vi (M\S∗) = vi

((⋃
j∈Y ∗

Sj

)
∪ (M\S)

)
=
∑
j∈Y ∗

vi (Sj) + vi (M\S)

≤ |Y ∗| ρNMMS(N)
i (M) + (N − n) ρNMMS(N)

i (M)

= (|X∗|+N − n) ρNMMS(N)
i (M) =

(
N −

∣∣X+
∣∣) ρNMMS(N)

i (M) .

We conclude that the conditions required to execute APX-MMS (|X+| , N, S∗,M) for
players in X+ (that is, the equivalent of Equation (2)) are satisfied, allowing us to
divide the items in S∗ between the players in X+ in a way that each player re-
ceives value ρNMMS(N)

i (M). Note that X+ ⊆ {2, 3, · · · , n}, hence |X+| ≤ n − 1, i.e.,
APX-MMS (|X+| , N, S∗,M) provides the required guarantee by the induction assump-
tion.

Initially we call APX-MMS(|N |, |N |,M,M). We have shown that (2) holds in subse-
quent calls, so it only remains to make sure that it also holds in this first call to the
algorithm. This is clearly the case, because both sides of the inequality are zero.

3.2. A Polynomial-Time Algorithm
While the algorithm described above seems rather innocent at first glance, it does
make one computational leap3 by letting one of the players compute an n-maximin
partition of the current set of items S. It is easy to see that this is NP-hard; in fact,
even when there are two players with identical valuations, it is NP-hard to determine
whether the the MMS guarantee is vi(M)/2 — this can be shown via an immediate
reduction from PARTITION.

Woeginger [1997] studied the problem of computing a maximin partition, albeit un-
der a different name: scheduling jobs on identical machines to maximize the mini-
mum completion time. He gave a polynomial-time approximation scheme (PTAS), and

3The computation of the set X+ may also be hard, but we are interested in the case of a constant number of
players, for which it is obviously tractable.



showed that no fully polynomial-time approximation scheme (FPTAS) exists unless
P = NP. Using our terminology, this means that given a constant ε > 0 we can com-
pute a partition S1, . . . , Sn of the set of items S so that mini∈[n] vi(S) ≥ (1−ε)MMS(n)

i (S)
in polynomial time.

The modified algorithm is almost identical, but the initial maximin partition, as
well as edges in the bipartite graph, are computed based on (1 − ε)-approximations
of MMS guarantees. The analysis essentially goes through unchanged, giving each
player a bundle worth (1 − ε)ρNMMS(N)

i (M). But, crucially, the exact value given by
the Density Balance Lemma (Lemma 3.2) for ρN is slightly larger than 2/3:

ρN =
2bNcodd

3bNcodd − 1
≥ 2N

3N − 1
=

2

3

(
1 +

1

3N − 1

)
.

To get a 2/3-approximation, we set (1 − ε) =
(

1 + 1
3N−1

)−1

, that is, ε = Θ(1/N)

suffices. If N is constant, Woeginger’s PTAS [Woeginger 1997] will run in polynomial
time.

3.3. Proof of Lemma 3.2
For the purposes of this proof we can drop the subscript i, e.g., we can write
MMS(N)(M) instead of MMS(N)

i (M) and v instead of vi, because the properties of the
density balance parameter ρN hold for any player and any possible valuation function.

Our first lemma proves a weaker result, implying an approximation ratio of 1/2
instead of 2/3. This lemma is technically required for the proof of the stronger bound,
but it may also be of independent interest because the entire proof is quite long and
intricate, whereas this weaker result is much easier to understand.

LEMMA 3.4 (WEAK DENSITY BALANCE LEMMA). For all N ≥ 2, ρN ≥ N
2N−2 ≥

1
2 .

PROOF. Denote λN = N
2N−2 . We will prove the lemma by establishing that ρN ≥ λN ,

i.e., for any valuation function v, S ⊆M, and n+m = N ,

v (M\S) ≤ mλNMMS(N) (M)⇒MMS(n) (S) ≥ λNMMS(N) (M) .

For any subset S ⊆ M and n,m such that n + m = N , suppose the condition
v (M\S) ≤ mλNMMS(N) (M) is satisfied. We only need to consider the case where
m ≥ 1 since the implication is obviously correct when m = 0.

We start by collecting all the items with value with at least λNMMS(N)(M) into a
set T :

T = {t1, t2, ..., tk} =
{
t ∈ S

∣∣∣v (t) ≥ λNMMS(N) (M)
}
.

If k ≥ n, we can create an n-partition such that each bundle has value at least
λNMMS(N) (M) by placing the n items in T into n different subsets and then adding
the other items to any of the subsets. Formally:

MMS(n) (S) ≥ min {v (t1) , v (t2) , ..., v (tk)} ≥ ρNMMS(N) (M) .

Otherwise, |T | = k ≤ n. It holds that

MMS(N−k) (M\T ) ≥MMS(N) (M) ,

because we can always find k subsets of items to discard from an N -maximin partition
such that all the items in T are discarded, and then the (N −k)-MMS guarantee of the



remaining items (which would be a subset ofM\T ) is at least as large as the original
N -MMS guarantee. Therefore,

v (S\T ) = v (M\T )− v (M\S) ≥ (N − k) MMS(N−k) (M\T )−mλNMMS(N) (M)

≥ (N − k) MMS(N) (M)−mλNMMS(N) (M) = (N − k −mλN ) MMS(N) (M)

≥ (2(n− k)− 1)λNMMS(N) (M) ,
(5)

where the last inequality holds because

(N − k −mλN )− (2(n− k)− 1)λN = (2λN − 1) k +N + (1−m− 2n)λN

≥ N + (1−m− 2n)λN =
(m− 1)N

2N − 2
≥ 0.

Since any item in S\T has value at most λNMMS(N) (M) and the total value of S\T
is at least (2(n− k)− 1)λNMMS(N) (M), we can divide items in S into n subsets using
the following algorithm. First, each item in T is a singleton subset. For each of the
n − k other subsets, we iteratively assign items in S \ T to that subset until its value
is at least λNMMS(N) (M); note that the value in each of these subsets will not exceed
2λNMMS(N)(M), which by Equation (5) means that there is enough value in S \ T
to make sure each subset has value at least λNMMS(N) (M). We have proved that
MMS(n) (S) ≥ λNMMS(N) (M), which completes the lemma’s proof.

With the goal of obtaining a stronger bound in mind, we introduce the concept of
water. An item is considered to be (made of) water if it is divisible, that is, it can
be divided arbitrarily between multiple players without losing value. Equivalently, it
may be intuitive to think of water as cash — although the water interpretation is more
natural in our figures.

We show (Lemma A.2) that that an equivalent definition for the density balance pa-
rameter relies on the condition that for all S ⊆ M, if v(M \ S) = (N − n)MMS(n)(S)

then MMS(n)(S) ≥ ρNMMS(N)(M). Moreover, this is true whenM\S is water. There-
fore, we need to be able to reason about the MMS guarantee over indivisible items and
water.

Suppose that the items in S have been partitioned into subsets. How should we allo-
cate water W in order to maximize the minimum value of any subset? On an intuitive
level we can regard each indivisible items in S as a brick of height equal to its value
and width 1. Bricks that belong to the same subset are placed on top of each other in
a container. Now (this is where the water analogy is useful) we pour the water W into
the container; its volume is v (W ). The height of the water line is exactly the value we
are interested in, and each subset now contains bricks and water in a single column
of width 1 (see Figure 2 for an illustration). By enumerating all possible ways to place
the items in S into the container we can obtain an N -maximin partition over S ∪W —
it would be the one with the highest water line.

We formalize this intuition and develop it into a series of lemmas, which culminates
in the proof of the following lemma — a lower bound on ρN . The proof is relegated to
the appendix.

LEMMA 3.5. Let ρ∗N =
2bNcodd

3bNcodd−1 . Then ρN ≥ ρ∗N .



Water line

Fig. 2. Filling water to maximize the minimum value of any subset.

By Lemma 3.5, to show that ρN = ρ∗N and complete the proof of Lemma 3.2, it
is sufficient to show that ρN ≤ ρ∗N . We establish this inequality by constructing an
example for any N .

LetM∗ = {i1, ..., idNeodd ,W}, where dNeodd = N+1−(N mod 2) indicates the smallest
odd number N ′ such that N ′ ≥ N . For all j ∈ [n], v (ij) = 1, and W is water such that
v (W ) =

⌊
N−1

2

⌋
. We also let S∗ = {i1, ..., idNeodd}, so M∗\S∗ = {W}. Finally, we let

n∗ =
⌈
N+1

2

⌉
and m∗ =

⌊
N−1

2

⌋
.

We claim that

MMS(N) (M∗) = 1 +

⌊
N−1

2

⌋
bNcodd

.

This is obviously true for an odd N : each subset contains one item ij and 1/N of the
water W . For an even N , we can place the N + 1 indivisible items into N subsets such
that one subset has two items (and value 2). We then divide the water between the
remaining N − 1 = bNcodd subsets, so each has value equal to the N -MMS guarantee.

Since

ρ∗NMMS(N) (M∗) =
2bNcodd

3bNcodd − 1
·

(
1 +

⌊
N−1

2

⌋
bNcodd

)
= 1

and v (W ) =
⌊
N−1

2

⌋
= m∗, it holds that

v (M∗\S∗) = v (W ) · 1 = m∗ · ρ∗NMMS(N) (M∗) .
Moreover, there are dNeodd identical indivisible items in subset S∗, and

2n∗ − 1 = 2

⌈
N + 1

2

⌉
− 1 = dNeodd.

Thus in any n∗-maximin partition of S∗ there is a subset with only one item. It follows
that

MMS(n∗) (S∗) = 1 = ρ∗NMMS(N) (M∗) .
This shows that ρN ≤ ρ∗N , and completes the proof of Lemma 3.2.
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Online Appendix to:
Fair Enough: Guaranteeing Approximate Maximin Shares

ARIEL D. PROCACCIA, Carnegie Mellon University
JUNXING WANG, Tsinghua University

A. PROOF OF LEMMA 3.5
Let H(k,S) denote the vectors of values of bundles that can be obtained when the set
S ⊆M is partitioned into k bundles. Formally:

H(k,S) =

(v (S1) , ..., v (Sk)) ∈ Rk
∣∣∣∣∣∣S =

⋃
i∈[k]

Si,∀i 6= j ∈ [k], Si ∩ Sj = ∅

 .

For any h ∈ H(k,S), let wh (η) be the amount of water that is required to reach a water
line of height η, i.e., wh (η) =

∑
i∈[k] max {0, η − hi}. Using this definition, we also define

the function fh(x) indicating the height of the water line after adding x water to the
items allocated by h: fh (x) = max {η |wh (η) ≤ x}. Note that wh (fh (x)) = x.

Let ωx be water of value exactly x, and denote W = {ωx |x ≥ 0} and W+ =
{ωx |x > 0}.

LEMMA A.1. For all α > MMS(n) (S) there exists W ∈W+ such that

MMS(n) (S ∪W ) = α.

PROOF. Let y (x) = MMS(n) (S ∪ ωx) be the n-MMS guarantee over the indivis-
ible items in S and water of value x. Since y (x) = maxh∈H(n,S) {fh (x)} and for
any h, fh is a continuous function, y (x) is also a continuous function. Furthermore,
y (0) = MMS(n) (S) and y(x) goes to infinity as x goes to infinity, so by the interme-
diate value theorem there exists x > 0 such that y(x) = α. Equivalently, there exists
W ∈W+ such that MMS(n) (S ∪W ) = α.

Our next goal is to establish an equivalent way of reasoning about the density bal-
ance parameter. Let

ρ=
N = max

{
λ

∣∣∣∣ ∀S ⊆M, n+m = N,

v (M\S) = mMMS(n) (S)⇒MMS(n) (S) ≥ λMMS(N) (M)

}
LEMMA A.2. For all N ≥ 2, ρN = ρ=

N .

PROOF. We prove the lemma by showing that ρN ≥ ρ=
N and ρN ≤ ρ=

N .
On the one hand, we claim that ρN ≥ ρ=

N , i.e., for any subset S ⊆ M such that
v (M\S) ≤ mρ=

NMMS(N) (M), it holds that MMS(n) (S) ≥ ρ=
NMMS(N) (M). Assume for

contradiction that this is not the case, then there is a subset S ⊆ M and n + m = N

such that v (M\S) ≤ mρ=
NMMS(N) (M) and MMS(n) (S) < ρ=

NMMS(N) (M).
Using Lemma A.1, there exist two water sets W1 and W2 such that

v ((M\S) ∪W1) = mρ=
NMMS(N) (M)

and
MMS(n) (S ∪W2) = ρ=

NMMS(N) (M) .

Copyright c© 2013 ACM 978-1-4503-2565-3/12/06...$15.00
DOI 10.1145/ http://doi.acm.org/10.1145/
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Putting these two equalities together, we get that

v ((M\S) ∪W1) = mMMS(n) (S ∪W2) .

Using the fact that

((M\S) ∪W1) ∪ (S ∪W2) =M∪W1 ∪W2

and the definition of ρ=
N , we obtain that

MMS(n) (S ∪W2) ≥ ρ=
NMMS(N) (M∪W1 ∪W2) .

Note that v(W1) ≥ 0 and v(W2) > 0, and therefore

MMS(N) (M∪W1 ∪W2) > MMS(N) (M) .

It follows that

MMS(n) (S ∪W2) > ρ=
NMMS(N) (M) ,

contradicting the the assumption that an equality holds.
On the other hand, we show that ρN ≤ ρ=

N , i.e., for all S ⊆ M and n + m = N ,
v (M\S) = mMMS(N) (M) implies MMS(n) (S) ≥ ρNMMS(N) (M). Indeed, assume for
contradiction that there exist S ⊆M and n+m = N such that v (M\S) = mMMS(n) (S)

and MMS(n) (S) < ρNMMS(N) (M). Then

v (M\S) = mMMS(n) (S) < mρNMMS(N) (M) .

Using the definition of ρN , it follows that MMS(n) (S) ≥ ρNMMS(N) (M), contradicting
the assumption.

By Lemma A.2, we conclude that

ρN = min

{
MMS(n) (S)

MMS(N) (M)

∣∣∣∣ S ⊆M, n+m = N,

v (M\S) = mMMS(n) (S)

}

We therefore focus on relating MMS(n)(S) to MMS(N)(M), under the condition that
v (M\S) = mMMS(n) (S). Hereinafter we denote

MMS(n) (S) = α, v (M\S) = mα, MMS(N) (M) = β.

Intuitively, MMS(N) (M) cannot exceed MMS(N) (S ∪W ) where W ⊆ W and v (W ) =
v (M\S). Hence, we concentrate on the case whereM\S is water.

Returning to our container metaphor, we have several indivisible items in the subset
S, the n-MMS guarantee of which is exact α. We also have some water of value mα. We
are interested in the water line after pouring the water into the container, and use the
notation f (h) = fh (mα) to denote this value. We also use g (h) to denote the area of
items in the first n subsets below the water line, assuming the water line is of height
β: g (h) =

∑
i∈[n] min {β, hi}; see Figure 3 for an illustration.

We consider height vectors in the set

H∗ = arg max
h

{
g (h)

∣∣∣f (h) = β,h ∈ H(N,S)
}
.

Due to symmetry, we can find a height vector h∗ ∈ H∗ such that h∗1 ≥ h∗2 ≥
... ≥ h∗N . Now we identify the rightmost coordinate l in h∗ with non-zero height:
l = max {i ∈ [n+m] |h∗i > 0}.
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Fig. 3. Illustration of the function g. When n = 4, g(h) is the yellow area.

If l ≤ n, for all i ≥ n+ 1, h∗i = 0. Hence,

wh∗ (α) ≥
∑

n+1≤i≤N

max {0, α− h∗i } = mα.

It follows that f (h∗) ≤ α. By the definition of H∗, f(h∗) = β, and hence α ≥ β — so in
this case ρN ≥ 1. We next consider the other case of l > n.

LEMMA A.3. Assume that l > n. Then h∗n + h∗l > β.

PROOF. Assume for contradiction that h∗n + h∗l ≤ β; the vector is illustration in
Figure 4(a). Then we can move all items in subset l into subset n, generating a new
height vector (as shown in Figure 4(b)):

h′ =
(
h∗1, ..., h

∗
n−1, h

∗
n + h∗l , h

∗
n+1, ..., h

∗
l−1, 0, ...0

)
∈ H(N,S).

Intuitively, the new partition of S has a larger value of g, and we can still achieve the
same water line.

(a) Before moving. (b) After moving

Fig. 4. Illustration of the proof of Lemma A.3 with n = 4 and l = 6.
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Formally, g (h′) = g (h∗) + h∗l > g (h∗). Moreover,

wh′ (β) = (β − h∗n − h∗l ) + (β − 0) +
∑

i/∈{n,l}

max {0, β − h∗i }

= max {0, β − h∗n}+ max {0, β − h∗l }+
∑

i/∈{n,l}

max {0, β − h∗i }

=
∑
i

max {0, β − h∗i } = wh∗ (β) = mα,

where the first equality follows from the assumption that h∗n + h∗l ≤ β. It follows that
f(h′) = β. We conclude that h∗ /∈ arg maxh

{
g (h)

∣∣f (h) = β,h ∈ H(N,S)
}

, i.e., h∗ /∈ H∗
— a contradiction.

LEMMA A.4. l ≤ 2n− 1.

PROOF. Assume for contradiction that l ≥ 2n. We move all items in subsets with
index greater than n to subsets 1, . . . , n, thereby obtaining the height vector

h′ =
(
h∗1 + h∗n+1, h

∗
2 + h∗n+2, ..., h

∗
n−1 + h∗2n−1, h

∗
n + h∗2n + h∗2n+1 + ...+ h∗l

)
∈ H(n,S).

Lemma A.3 implies that h∗n + h∗l > β, and hence for any i ∈ [n],

h′i ≥ h∗i + h∗n+i ≥ h∗n + h∗l > β ≥ α,
where we can assume that the last inequality holds because otherwise ρN ≥ 1. Hence,

MMS(n) (S) ≥ min {h′i |i ∈ [n]} > α,

whereas we have assumed that the left-hand side and right-hand side are equal.

LEMMA A.5. Let t = l − n. Then h∗n−t ≤ α.

PROOF. First, note that by Lemma A.4, t ∈ [n − 1]. Now assume for contradiction
that h∗n−t > α. We move the items in subsets n + 1, n + 2, . . . , n + t to subsets n − t +
1, n− t+ 2, . . . , n, respectively, generating the height vector:

h′ =
(
h∗1, ..., h

∗
n−t, h

∗
n−t+1 + h∗n+1, h

∗
n−t+2 + h∗n+2, ..., h

∗
n + h∗n+t

)
∈ H(n,S).

In the example shown in Figure 5, if we place subsets 5 and 6 on top of subsets 3 and
4, we can find a 4-partition of S with minimum value (the solid magenta line) higher

Fig. 5. Illustration of the proof of Lemma A.5, with n = 4, l = 6, and t = 2.
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than the water line (the dashed red line), showing that the 4-MMS guarantee is higher
than it should be.

Formally, for any i ∈ [n− t], h′i = h∗i ≥ h∗n−t > α. Furthermore, for any i ∈ [t],

h′n−t+i = h∗n−t+i + h∗n+i ≥ h∗n + h∗l > β ≥ α,
where the third transition uses Lemma A.3. We conclude that

MMS(n) (S) ≥ min {h′i |i ∈ [n]} > α,

but we assumed that the left-hand side is equal to the right-hand side.

We are now ready to prove Lemma 3.5, which was stated in §3.3.

PROOF OF LEMMA 3.5. By Lemma A.5, it holds that

wh∗ (β) =
∑

i∈[n+m]

max {0, β − hi} ≥
n+t∑
i=n−t

(β − α)+

N∑
i=n+t+1

β = (2t+ 1) (β − α)+(m− t)β.

Since wh∗ (β) = mα, it follows that

mα ≥ (2t+ 1) (β − α) + (m− t)β = (β − 2α) t+ (m+ 1)β − α.
From Lemmas 3.4 and A.2 we know that

α

β
=

MMS(n) (S)

MMS(N) (M)
≥ 1

2
,

i.e., β − 2α ≤ 0.
Lemma A.4 implies that l ≤ 2n − 1, so t = l − n ≤ n − 1. In addition, t = l − n ≤

N − n = m. Putting these two observations together, we know that t ≤ min {n− 1,m}.
We therefore consider two cases.

Case 1: n− 1 ≤ m. Then

mα ≥ (β − 2α) (n− 1) + (m+ 1)β − α = (n+m)β − (2n− 1)α,

which directly implies that (2n+m− 1)α ≥ (n+m)β. Since n− 1 ≤
⌊
N−1

2

⌋
, it follows

that
α

β
≥ n+m

2n+m− 1
=

N

N + n− 1
≥ N

N +
⌊
N−1

2

⌋ ≥ 2bNcodd
3bNcodd − 1

= ρ∗N .

Case 2: n− 1 > m. Then

mα ≥ (β − 2α)m+ (m+ 1)β − α = (2m+ 1)β − (2m+ 1)α,

that is, (3m+ 1)α ≥ (2m+ 1)β. Since m ≤
⌊
N−1

2

⌋
, we have that

α

β
≥ 2m+ 1

3m+ 1
=

2

3
+

1

9m+ 3
≥ 2

3
+

1

9 ·
⌊
N−1

2

⌋
+ 3

=
2bNcodd

3bNcodd − 1
= ρ∗N .
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