Cooperative Games -
 The Shapley value and Weighted Voting

Yair Zick

The Shapley Value

Given a player i, and a set $S \subseteq N$, the marginal contribution of i to S is

$$
m_{i}(S)=v(S \cup\{i\})-v(S)
$$

How much does i contribute by joining S ? Given a permutation $\sigma \in \Pi(N)$ of players, let the predecessors of i in σ be

$$
P_{i}(\sigma)=\{j \in N \mid \sigma(j)<\sigma(i)\}
$$

We write $m_{i}(\sigma)=m_{i}\left(P_{i}(\sigma)\right)$

The Shapley Value

Suppose that we choose an ordering of the players uniformly at random. The Shapley value of player i is

$$
\phi_{i}=\mathbb{E}\left[m_{i}(\sigma)\right]=\frac{1}{n!} \sum_{\sigma \in \Pi(N)} m_{i}(\sigma)
$$

The Shapley Value

Efficient: $\sum_{i \in N} \phi_{i}=v(N)$

Symmetric: players who contribute the same are paid the same.
Dummy: dummy players aren't paid.
Additive: $\phi_{i}\left(\mathcal{G}_{1}\right)+\phi_{i}\left(\mathcal{G}_{2}\right)=\phi_{i}\left(\mathcal{G}_{1}+\mathcal{G}_{2}\right)$
The Shapley value is the only payoff division satisfying all of the above!

The Shapley Value

Theorem: if a value satisfies efficiency, additivity, dummy and symmetry, then it is the Shapley value.

Proof: let's prove it on the board.

Computing Power Indices

The Shapley value has a brother - the Banzhaf value

$$
\beta_{i}=\frac{1}{2^{n}} \sum_{S \subseteq N} m_{i}(S)
$$

It uniquely satisfies a different set of axioms
Different distributional assumption more biased towards sets of size $\frac{n}{2}$

Voting Power in the EU Council of Members

- The EU council of members is one of the governing members of the EU.
- Each state has a number of representatives proportional to its population - Proportionality: "one person - one vote"
- In terms of voting power $-\phi_{i} \sim \frac{w_{i}}{w(N)}$

Voting Power in the EU Council of Members

- Changes to the voting system can achieve better proportional representation.
- Changing the weights - generally unpopular and politically delicate
- Changing the quota - easier to do, an "innocent" change.

Selecting an appropriate quota (EU - about 62\%), achieves proportional representation with a very small error!

Changing the Quota

- Changes to the quota change players' power.
- What is the relation between quota selection and voting power?

A "typical" graph of 'i(q)

Weights are a Fibonacci Series

Maximizing $\phi_{i}(q)$

Theorem: $\boldsymbol{\phi}_{i}(\boldsymbol{q})$ is maximized at $\boldsymbol{q}=\boldsymbol{w}_{\boldsymbol{i}}$

Proof: two cases

$\boldsymbol{q} \leq \boldsymbol{w}_{\boldsymbol{i}}$: if i is pivotal for $\sigma \in \Pi(N)$ under q then $w\left(P_{i}(\sigma)\right)<q \leq w_{i}$, but $w\left(P_{i}(\sigma)\right)+w_{i} \geq q$. This implies that i is pivotal for σ when the threshold is w_{i} as well.

Maximizing $\phi_{i}(q)$

Lemma: let $\boldsymbol{T}_{i}(\boldsymbol{x})=\left\{\sigma \in \boldsymbol{\Pi}(\mathrm{N}) \mid \boldsymbol{w}\left(\boldsymbol{P}_{\boldsymbol{i}}(\sigma)\right)<\boldsymbol{x}\right\}$ Then

$$
\left|T_{i}(x)\right|+\left|T_{i}(y)\right| \geq\left|T_{i}(x+y)\right|
$$

for all $x, y \in \mathbb{N}$
Proof: assume that $x \geq y$. We write

$$
T_{i}(x, y)=\left\{\sigma \in \Pi(N) \mid x \leq w\left(P_{i}(\sigma)\right)<y\right\}
$$

$T_{i}(x) \subseteq T_{i}(x+y)$, so $T_{i}(x+y) \backslash T_{i}(x)=T_{i}(x, x+y)$
Need to show that $\left|T_{i}(y)\right| \geq\left|T_{i}(x, x+y)\right|$

Maximizing $\phi_{i}(q)$

Need to show that $\left|T_{i}(y)\right| \geq\left|T_{i}(x, x+y)\right|$
Construct an injective mapping $\psi: T_{i}(x, x+y) \rightarrow T_{i}(y)$
$A: w(A)>x \quad B$

-••••••••••••

B

$A: w(A)>x$

Maximizing $\phi_{i}(q)$

Second case: $q>w_{i}$
Let $\Pi_{i}(q)=\left\{\sigma \in \Pi(N) \mid q-w_{i} \leq w\left(P_{i}(\sigma)\right)<q\right\}$, then
$\Pi_{i}(q)=T_{i}\left(q-w_{i}, q\right)$ and $\Pi_{i}\left(w_{i}\right)=T_{i}\left(w_{i}\right)$.
By Lemma

$$
\left|\Pi_{i}\left(w_{i}\right)\right|=\left|T_{i}\left(w_{i}\right)\right| \geq\left|T_{i}(q)\right|-\left|T_{i}\left(q-w_{i}\right)\right|=\left|\Pi_{i}(q)\right|
$$

which concludes the proof.

Minimizing $\phi_{i}(q)$

Not as easy, two strong candidate minimizers: $q=1$ or $q=w_{i}+1$.

Not always them, not clear which one to choose. For below-median players, setting $q=w_{i}+1$ is worse.

Deciding whether a given quota is maximizing/minimizing is computationally intractable.

The expected behavior of $\phi_{i}(q)$

It seems that analyzing fixed weight vectors is not very effective...
even small changes in quota can cause unpredictable behavior; worst-case guarantees are not great.

Can we say something about the likely Shapley value when weights are sampled from a distribution?

Balls and Bins Distributions

- We have m balls, n bins.
- A discrete probability distribution $\left(p_{1}, \ldots, p_{n}\right)$
- p_{i} is the probability that a ball will land in bin i

Balls and Bins: Uniform

- Suppose that the weights are generated from a uniform balls and bins process with m balls and n bins.
- Theorem: when the threshold is near integer multiples of m / n, there is a high disparity in voting power (w.h.p.)
- Theorem: when the threshold is well-away from integer multiples of m / n, all agents have nearly identical voting power (w.h.p.)

Balls and Bins: Exponential

- There are m voters. A voter votes for player i w.p. $\mathrm{p}^{\mathrm{i}+1}$
- The probability of high-index players getting votes is extremely low. Most votes go to a few candidates.
- Theorem: if weights are drawn from an exponential ballsand -bins distribution, then with high probability, the resulting weights are super-increasing
- A vector of weights $\left(w_{1}, \ldots, w_{n}\right)$ is called super-increasing if

$$
\forall i \in N: w_{i} \geq \sum_{j<i} w_{j}
$$

Balls and Bins: Exponential

- In order to study the Shapley value in the Balls and Bins exponential case, it suffices to understand super-increasing sequences of weights.
- Suppose that weights are $1,2,4,8, \ldots, 2^{n-1}$ $\left(w_{i}=2^{i-1}\right)$
- Let us observe the (beautiful) graph that results.

$$
0.9 \text { (}
$$

Super-Increasing Weights

- $\beta(S)=\sum_{i \in S} 2^{i-1}$: the binary representation of S
- $A(q)$: the minimal set $S \subseteq N$ such that $w(S) \geq q$
- Claim: if the weights are super-increasing, then

$$
\varphi_{i}^{w}(q)=\varphi_{i}^{\beta}(\beta(A(q))
$$

- the Shapley value when the threshold is q equals the Shapley value when the weights are powers of 2, and the threshold is $\beta(A(q))$
- Computing the Shapley value for super-increasing weights boils down to computing it for powers of 2 !
- Using this claim, we obtain a closed-form formula of the SV when the weights are super-increasing.

Conclusion

- Computation: generally, computing the Shapley value (and the Banzhaf value) is \#P complete (counting complexity)
- It is easy when we know that the weights are not too large (pseudopolynomial time)
- It is easy to approximate them through random sampling in the case of simple games.

Further Reading

- Chalkiadakis et al. "Computational Aspects of Cooperative Game Theory"
- Zuckerman et al. "Manipulating the Quota in Weighted Voting Games" (JAIR'12)
- Zick et al. "The Shapley Value as a Function of the Quota in Weighted Voting Games" (IJCAI'11)
- Zick "On Random Quotas and Proportional Representation in Weighted Voting Games" (IJCAI'13)
- Oren et al. "On the Effects of Priors in Weighted Voting Games" (COMSOC’14)

