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The Shapley Value 

Given a player 𝑖, and a set 𝑆 ⊆ 𝑁, the 
marginal contribution of 𝑖 to 𝑆 is  

𝑚𝑖(𝑆) = 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)  
How much does 𝑖 contribute by joining 𝑆?  
Given a permutation 𝜎 ∈ Π(𝑁) of players, 
let the predecessors of 𝑖 in 𝜎 be  

𝑃𝑖(𝜎) = {𝑗 ∈ 𝑁 | 𝜎(𝑗)  < 𝜎(𝑖)} 
We write 𝑚𝑖(𝜎)  =  𝑚𝑖(𝑃𝑖(𝜎)) 



The Shapley Value 

Suppose that we choose an ordering of the 
players uniformly at random. The Shapley 
value of player 𝑖 is  

𝜙𝑖 = 𝔼 𝑚𝑖(𝜎) =
1
𝑛!

� 𝑚𝑖(𝜎)
𝜎∈Π(𝑁)
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The Shapley Value 

Efficient: ∑ 𝜙𝑖𝑖∈𝑁 = 𝑣(𝑁) 
Symmetric: players who contribute the 
same are paid the same. 
Dummy: dummy players aren’t paid. 
Additive: 𝜙𝑖 𝒢1 + 𝜙𝑖 𝒢2 = 𝜙𝑖(𝒢1 + 𝒢2) 

The Shapley value is the only payoff 
division satisfying all of the above! 

 



The Shapley Value 

 
 
 
Proof: let’s prove it on the board.  
 

Theorem: if a value satisfies efficiency, 
additivity, dummy and symmetry, then it 
is the Shapley value. 



Computing Power Indices 

The Shapley value has a brother – the 
Banzhaf value 

𝛽𝑖 =
1

2𝑛
� 𝑚𝑖(𝑆)
𝑆⊆𝑁

 

It uniquely satisfies a different set of 
axioms 
Different distributional assumption – 
more biased towards sets of size 𝑛
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Voting Power in the EU Council of 
Members 

• The EU council of members is one of the 
governing members of the EU.  
– Each state has a number of representatives 

proportional to its population 
– Proportionality: “one person – one vote” 

• In terms of voting power - 𝜙𝑖 ∼
𝑤𝑖

𝑤(𝑁)
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• Changes to the voting system can achieve better 
proportional representation. 
 

• Changing the weights – generally unpopular and 
politically delicate 
 

• Changing the quota – easier to do, an “innocent” 
change.  
 

Selecting an appropriate quota  
(EU - about 62%), achieves proportional 
representation with a very small error! 

 

Voting Power in the EU Council of 
Members 



• Changes to the quota change players’ power. 
 

• What is the relation between quota selection 
and voting power? 

 
 
 

 

Changing the Quota 

'i 'i(q) 



A “typical” graph of 'i(q)  

The graph converges 
to some value when 
quota is 50%… 

Lower variation 
towards the 50% 
quota 

Max at 
𝑤𝑖 

Min at 
𝑤𝑖 + 1 



Weights are a Fibonacci Series 



Maximizing 𝜙𝑖(𝑞) 

Theorem: 𝝓𝒊(𝒒) is maximized at 𝒒 = 𝒘𝒊 

Proof: two cases 
𝒒 ≤ 𝒘𝒊: if 𝑖 is pivotal for 𝜎 ∈ Π(𝑁) under 𝑞 then 
𝑤 𝑃𝑖 𝜎 < 𝑞 ≤ 𝑤𝑖, but 𝑤 𝑃𝑖 𝜎 + 𝑤𝑖 ≥ 𝑞. This 
implies that 𝑖 is pivotal for 𝜎 when the threshold is 𝑤𝑖 as 
well.  



Maximizing 𝜙𝑖(𝑞) 
Lemma: let 𝑻𝒊 𝒙 = {𝝈 ∈ 𝚷 𝐍 ∣ 𝒘 𝑷𝒊 𝝈 < 𝒙} 
Then  

|𝑻𝒊 𝒙 | + 𝑻𝒊 𝒚 ≥ |𝑻𝒊 𝒙 + 𝒚 |  
for all 𝒙,𝒚 ∈ ℕ 

Proof: assume that 𝑥 ≥ 𝑦. We write 
𝑇𝑖 𝑥,𝑦 = 𝜎 ∈ Π 𝑁 𝑥 ≤ 𝑤 𝑃𝑖 𝜎 < 𝑦  

𝑇𝑖 𝑥 ⊆ 𝑇𝑖 𝑥 + 𝑦 , so 𝑇𝑖 𝑥 + 𝑦 ∖ 𝑇𝑖 𝑥 = 𝑇𝑖(𝑥, 𝑥 + 𝑦) 
Need to show that 𝑇𝑖 𝑦 ≥ |𝑇𝑖(𝑥, 𝑥 + 𝑦)|  



Maximizing 𝜙𝑖(𝑞) 
Need to show that 𝑇𝑖 𝑦 ≥ |𝑇𝑖(𝑥, 𝑥 + 𝑦)|  
Construct an injective mapping  𝜓:𝑇𝑖 𝑥, 𝑥 + 𝑦 → 𝑇𝑖 𝑦   

𝑨:𝒘 𝑨 > 𝒙 

𝑖 

𝑩 

𝑨:𝒘 𝑨 > 𝒙 

𝑖 

𝑩 



Maximizing 𝜙𝑖(𝑞) 
Second case: 𝑞 > 𝑤𝑖 
Let Π𝑖 𝑞 = {𝜎 ∈ Π 𝑁 ∣ 𝑞 − 𝑤𝑖 ≤ 𝑤 𝑃𝑖 𝜎 < 𝑞}, then  
Π𝑖 𝑞 = 𝑇𝑖(𝑞 − 𝑤𝑖 , 𝑞) and Π𝑖 𝑤𝑖 = 𝑇𝑖 𝑤𝑖 . 
By Lemma  
 
Π𝑖 𝑤𝑖 = 𝑇𝑖 𝑤𝑖 ≥ 𝑇𝑖 𝑞 − 𝑇𝑖 𝑞 − 𝑤𝑖 = Π𝑖 𝑞  

 
which concludes the proof. 



Minimizing 𝜙𝑖(𝑞) 
Not as easy, two strong candidate minimizers: 𝑞 = 1 or 
𝑞 = 𝑤𝑖 + 1.  
 
Not always them, not clear which one to choose. For 
below-median players, setting 𝑞 = 𝑤𝑖 + 1 is worse. 
 
Deciding whether a given quota is 
maximizing/minimizing is computationally intractable. 



The expected behavior of 𝜙𝑖(𝑞) 
It seems that analyzing fixed weight vectors is not very 
effective…  
 
even small changes in quota can cause unpredictable 
behavior; worst-case guarantees are not great. 
 
Can we say something about the likely Shapley value 
when weights are sampled from a distribution?  
 



Balls and Bins Distributions 

• We have 𝑚 balls, 𝑛 bins. 
• A discrete probability distribution (𝑝1, … ,𝑝𝑛) 
• 𝑝𝑖 is the probability that a ball will land in bin 𝑖 
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Balls and Bins: Uniform  

• Suppose that the weights are generated from 
a uniform balls and bins process with m balls 
and n bins. 

• Theorem: when the threshold is near integer 
multiples of 𝑚 𝑛⁄ , there is a high disparity in 
voting power (w.h.p.)  

• Theorem: when the threshold is well-away 
from integer multiples of 𝑚 𝑛⁄ , all agents have 
nearly identical voting power (w.h.p.) 
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Balls and Bins: Exponential 
• There are m voters. A voter votes for player i w.p. pi + 1 
• The probability of high-index players getting votes is 

extremely low. Most votes go to a few candidates. 
• Theorem: if weights are drawn from an exponential balls-

and –bins distribution, then with high probability, the 
resulting weights are super-increasing 

• A vector of weights (w1,…, wn) is called super-increasing if  
 

∀𝑖 ∈ 𝑁:  𝑤𝑖 ≥�𝑤𝑗
𝑗<𝑖
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Balls and Bins: Exponential 

• In order to study the Shapley value in the Balls 
and Bins exponential case, it suffices to 
understand super-increasing sequences of 
weights.  

• Suppose that weights are 1,2,4,8, … , 2𝑛−1 
(𝑤𝑖 = 2𝑖−1) 

• Let us observe the (beautiful) graph that 
results.  
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Super-Increasing Weights 
• 𝛽 𝑆 = ∑ 2𝑖−1𝑖∈𝑆 : the binary representation of 𝑆 
• 𝐴 𝑞 : the minimal set 𝑆 ⊆ 𝑁 such that 𝑤 𝑆 ≥ 𝑞  
• Claim: if the weights are super-increasing, then  

𝜑𝑖𝒘 𝑞 = 𝜑𝑖
𝜷(𝛽(𝐴 𝑞 ) 

• the Shapley value when the threshold is 𝑞 equals the  
Shapley value when the weights are powers of 2,  
and the threshold is 𝛽 𝐴 𝑞  

• Computing the Shapley value for super-increasing 
weights boils down to computing it for powers of 2!  

• Using this claim, we obtain a closed-form formula of 
the SV when the weights are super-increasing.  
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Conclusion 

• Computation: generally, computing the 
Shapley value (and the Banzhaf value) is 
#P complete (counting complexity) 

• It is easy when we know that the weights 
are not too large (pseudopolynomial time) 

• It is easy to approximate them through 
random sampling in the case of simple 
games.   
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Further Reading 

• Chalkiadakis et al. “Computational Aspects of 
Cooperative Game Theory” 

• Zuckerman et al. “Manipulating the Quota in 
Weighted Voting Games” (JAIR’12) 

• Zick et al. “The Shapley Value as a Function of the 
Quota in Weighted Voting Games” (IJCAI’11) 

• Zick “On Random Quotas and Proportional 
Representation in Weighted Voting Games” 
(IJCAI’13) 

• Oren et al. “On the Effects of Priors in Weighted 
Voting Games” (COMSOC’14) 
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