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Cooperative Games 

Players divide into 
coalitions to perform tasks 

Coalition members can 
freely divide profits. 

How should profits be divided?  



Matching Games 

• We are given a weighted graph 
 
 
 
 
 

• Players are nodes; value of a coalition is the value 
of the max. weighted matching on the subgraph. 

• Applications: markets, collaboration networks. 
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Network Flow Games 

• We are given a weighted, directed graph 
 
 
 
 
 

• Players are edges; value of a coalition is the value 
of the max. flow it can pass from s to t. 

• Applications: computer networks, traffic flow, 
transport networks. 
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Weighted Voting Games 

• We are given a list of weights and a threshold. 
• (𝑤1, … ,𝑤𝑛; 𝑞) 
• Each player 𝑖 has a weight 𝑤𝑖; value of a 

coalition is 1 if its total weight is more than 𝑞 
(winning), and 0 otherwise (losing). 

• Applications: models parliaments, UN security 
council, EU council of members. 
 
 
 
 



Bankruptcy Problem 
• In the Talmud:  
• A business goes bankrupt, leaving several debts 

behind. 
• Creditors want to collect the debt. 
• The business has a net value of 𝐿 to divide. 
• Each creditor has a claim 𝑐𝑖  
• Problem: claims total is more than the net value: 
𝑐1 + ⋯+ 𝑐𝑛 > 𝐿 

• How should 𝐿 be divided?  
• Applications: legal matters (divorce law, 

bankruptcy)  
 
 
 



Cost Sharing 

• A group of friends shares a cab on the way 
back from a club; how should taxi fare be 
divided? 

• How to split a bill?  
• A number of users need to connect to a 

central electricity supplier; how should the 
cost of setting up the electricity network be 
divided? (should a central location be charged 
as much as a far-off location?) 
 
 
 
 



Cooperative Games 

• A set of players - 𝑁 = 1, … ,𝑛  
• Characteristic function -  𝑣: 2𝑁 → ℝ 
• 𝑣(𝑆) – value of a coalition 𝑆. 
• 𝐶𝐶 – a partition of 𝑁; a coalition 
structure. 

• 𝑂𝑂𝑂 𝒢 = max
𝐶𝐶

∑ 𝑣(𝑆)𝑆∈𝐶𝐶   

• Imputation: a vector 𝐱 ∈ ℝ𝑛  satisfying 
efficiency: ∑ 𝑥𝑖𝑖∈𝑆 = 𝑣(𝑆) for all 𝑆 in 𝐶𝐶 



Cooperative Games 

A game 𝒢 = 〈𝑁, 𝑣〉 is called simple if  
𝑣 𝑆 ∈ {0,1} 

𝒢 is monotone if for any 𝑆 ⊆ 𝑇 ⊆ 𝑁:  
𝑣 𝑆 ≤ 𝑣(𝑇) 

𝒢 is superadditive if for disjoint 𝑆,𝑇 ⊆ 𝑁: 
𝑣 𝑆 + 𝑣 𝑇 ≤ 𝑣(𝑆 ∪ 𝑇) 

𝒢 is convex if for 𝑆 ⊆ 𝑇 ⊆ 𝑁 & 𝑖 ∈ 𝑁 ∖ 𝑇: 
𝑣(𝑆 ∪ {𝑖})  − 𝑣(𝑆) ≤ 𝑣(𝑇 ∪ {𝑖})  − 𝑣(𝑇) 

 



Dividing Payoffs in 
Cooperative Games 

The core, the Shapley value and the Nucleolus 



The Core 

An imputation 𝐱 is in the core if  

�𝑥𝑖
𝑖∈𝑆

= 𝑥(𝑆) ≥ 𝑣 𝑆 ,∀𝑆 ⊆ 𝑁 

 
• Each subset of players is getting at least 

what it can make on its own.  
• A notion of stability; no one can deviate.   



The Core 

The core is a polyhedron: a set of vectors in 
ℝ𝑛 that satisfies linear constraints 

�𝑥𝑖
𝑖∈𝑁

= 𝑣 𝑁  

�𝑥𝑖
𝑖∈𝑆

≥ 𝑣 𝑆 ,∀𝑆 ⊆ 𝑁 

   



The Core 

For three players, 𝑁 = {1,2,3} 
𝑥1 + 𝑥2 + 𝑥3 = 𝑣 𝑁  

 
𝑥𝑖 ≥ 𝑣 {𝑖} ,∀𝑖 ∈ 𝑁 

 
𝑥2 + 𝑥3 ≥ 𝑣 2,3 ⇒ 𝑥1 ≤ 𝑣 𝑁 − 𝑣( 2,3 ) 
𝑥1 + 𝑥3 ≥ 𝑣 1,3 ⇒ 𝑥2 ≤ 𝑣 𝑁 − 𝑣 1,3  
𝑥1 + 𝑥2 ≥ 𝑣 1,2 ⇒ 𝑥3 ≤ 𝑣 𝑁 − 𝑣( 1,2 ) 

   



1 

2 3 

𝑥1 = 𝑣({1}) 

𝑥1 =  𝑣(𝑁) − 𝑣({2,3}) 

𝑥3 = 𝑣({3}) 

𝑥3 = 𝑣(𝑁) − 𝑣({1,2}) 

𝑥1 + 𝑥2 + 𝑥3 =  𝑣(𝑁) 



Is the Core Empty? 
The core can be empty… 
Core-Empty: given a game 𝒢 = 〈𝑵,𝒗〉, is 
the core of 𝒢 empty?  
Note that we are “cheating” here: a naïve 
representation of 𝒢 is a list of 2𝑛 vectors 
We are generally dealing with 
a. Games with a compact representation 
b. Oracle access to 𝒢 
… and obtaining algorithms that are 𝑝𝑝𝑝𝑝(𝑛) 
   



Is the Core Empty? 

Simple Games: a game is called simple if 
𝑣 𝑆 ∈ {0,1} for all 𝑆 ⊆ 𝑁.  
Coalitions with value 1 are winning;  
those with value 0 are losing.  
A player is called a veto player if she is a 
member of every winning coalition (can’t 
win without her).  



Core Nonemptiness: Simple Games 

Theorem: let 𝒢 = 〈𝑁, 𝑣〉 be a simple game; 
then 𝐶𝐶𝐶𝐶 𝒢 ≠ ∅ iff 𝒢 has veto players.  
 
Corollary: Core-Empty is easy when 
restricted to weighted voting games. 
  



The General Case 
Theorem: Core-Empty is NP-hard 
Proof: we will show this claim for a class of games 
called induced-subgraph games 
 
 
 
 
 
Players are nodes, value of a coalition is the weight of 
its induced subgraph. 
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The General Case 
Lemma: the core of an induced subgraph game is not 
empty iff the graph has no negative cut.  
Proof: we will show first that if there is no negative 
cut, then the core is not empty.  
Consider the payoff division that assigns each node 
half the value of the edges connected to it 

𝜙𝑖 =
1
2
�𝑤(𝑖, 𝑗)
𝑗∈𝑁

 

Need to show that 𝜙 𝑆 ≥ 𝑣(𝑆) for all 𝑆 ⊆ 𝑁. 



The General Case 

𝜙 𝑆 = �𝜙𝑖
𝑖∈𝑆

= ��
1
2
𝑤(𝑖, 𝑗)

𝑗∈𝑁𝑖∈𝑆

 

          = ��
1
2
𝑤(𝑖, 𝑗)

𝑗∈𝑆

+ � �
1
2
𝑤(𝑖, 𝑗)

𝑗∈𝑁∖𝑆𝑖∈𝑆𝑖∈𝑆

 

          = 𝑣 𝑆 +
1
2
𝐶𝐶𝐶 𝑆,𝑁 ∖ 𝑆   

Since there are no negative cuts, the last expression is 
at least 𝑣(𝑆) 
Note: we haven’t shown efficiency, i.e. 𝜙 𝑁 = 𝑣(𝑁) 



The General Case 
Now, suppose that there is some negative cut; i.e. 
there is some 𝑆 ⊆ 𝑁 such that  

� � 𝑤(𝑖, 𝑗)
𝑗∈𝑁∖𝑆𝑖∈𝑆

< 0 

Take any imputation  𝑥; then  

�𝑥𝑖
𝑖∈𝑁

 = 𝑥 𝑆 + 𝑥 𝑁 ∖ 𝑆 =  𝑣 𝑁  

                     = 𝜙 𝑆 + 𝜙 𝑁 ∖ 𝑆   



The General Case 
Therefore: 

    𝑥 𝑆 − 𝑣 𝑆 + 𝑥 𝑁 ∖ 𝑆 − 𝑣 𝑁 ∖ 𝑆 = 
 𝜙 𝑆 − 𝑣 𝑆 + 𝜙 𝑁 ∖ 𝑆 − 𝑣 𝑁 ∖ 𝑆    =  

� �
1
2
𝑤(𝑖, 𝑗)

𝑗∈𝑁∖𝑆𝑖∈𝑆

+ � �
1
2
𝑤(𝑖, 𝑗)

𝑗∈𝑆𝑖∈𝑁∖𝑆

 = 

                                                  𝐶𝐶𝐶 𝑆,𝑁 ∖ 𝑆 < 0 
So, it is either the case that 𝑥 𝑆 < 𝑣(𝑆) or 
𝑥 𝑁 ∖ 𝑆 < 𝑣(𝑁 ∖ 𝑆); hence 𝑥 cannot be in the core.  
 



The General Case 
Lemma: deciding whether a graph has a negative cut 
is NP-complete. 
Proof: we reduce from the Max-Cut problem. Given a 
weighted, undirected graph Γ = 〈𝑉,𝐸〉, where 
𝑤 𝑖, 𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ 𝐸, and an integer 𝐾, is there 
a cut 𝑆,𝑉 ∖ 𝑆  of Γ whose weight is more than 𝐾? 



The General Case 
We write 𝑉 = 1, … ,𝑛 . We define a graph 
Γ′ = 〈𝑉′,𝐸′〉 with capacities as follows 
𝑐 𝑖, 𝑗 = −𝑤 𝑖, 𝑗  for all 𝑖, 𝑗 ∈ 𝐸 
𝑐 0, 𝑗 = 𝑐 𝑛 + 1, 𝑗 = 𝑤(𝐸) for all 𝑗 ∈ 𝑉 
𝑐 0,𝑛 + 1 = 𝐾 − 𝑛𝑛(𝐸) 
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The General Case 
Any negative cut in this graph must separate 0 and 
𝑛 + 1. It must also have exactly 𝑛 edges with capacity 
𝑤(𝐸). Therefore, it is negative iff the original graph 
has a cut with weight at least 𝐾.  
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The General Case 
Notes:  
this proof is one of the first complexity results on the 
stability of cooperative games, and appears in Deng & 
Papadimitriou’s seminal paper “On the Complexity of 
Cooperative Solution Concepts” (1994). 
The payoff division 𝜙𝑖  is special: it is in fact the 
Shapley value for induced graph games. 



• What if the core is empty? 
• The players cannot generate enough value to 

satisfy everyone. 
• We can increase the total value with a subsidy 

𝑂𝑂𝑂(𝒢) 𝛼 · 𝑂𝑂𝑂(𝒢) 

Core Extensions 



Core Extensions 
As an LP: 

min𝛼 
subject to:  
𝑥 𝑁 = 𝛼 ⋅ 𝑂𝑂𝑂(𝒢) 
 𝑥 𝑆 ≥ 𝑣 𝑆 ,∀𝑆 ⊆ 𝑁 

If 𝛼 = 1 then the core is not empty. 
 
The value of 𝛼 in an optimal solution of the above LP 
is called the cost of stability of 𝒢,  
and referred to as 𝐶𝐶𝐶 𝒢  



• Some coalitions may be impossible  
or unlikely due to practical reasons 

• Interaction networks [Myerson ’77]: 
– Nodes are agents 
– Edges are social links 
– A coalition can form  

only if its agents are  
connected 
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Restricted cooperation - 
example 

• The coalition {2,9,10,12} is allowed 
• The coalition {3,6,7,8} is not allowed 
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Restricted cooperation 
increases stability 

Theorem [Demange’04]: If the underlying 
network 𝐻 is a tree, then the core of 𝒢|𝐻  is 
non-empty 
 
Moreover, a core outcome  
can be computed efficiently 
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CoS with  
restricted cooperation  

• Generally, 𝐶𝐶𝐶(𝒢) can be as high as 𝑛 
– See example in [Bachrach et al.’09] 

 
• By [Demange’04]: if 𝐻 is a tree, the core is 

non-empty (i.e. 𝐶𝐶𝐶(𝒢|𝐻) = 1) 
 

What is the connection between network 
complexity and the cost of stability? 
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Graphs and tree-width 

• Combinatorial measures to the 
“complexity” of a graph. E.g.: 
–Average/max degree 
–Expansion 
–Connectivity 
–Tree-width 
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Graphs and tree-width 

Given a graph Γ = 𝑉,𝐸 , a tree decomposition 
of Γ is a tree 𝒯 = 〈ℬ,ℰ〉 where 
- The nodes of 𝒯 are subsets of 𝑉 
- If 𝑖, 𝑗 ∈ 𝐸, then there exists some 𝑆 ∈ ℬ 

such that 𝑖, 𝑗 ∈ 𝑆 
- If 𝑆,𝑇 ∈ ℬ contain 𝑖 ∈ 𝑉, then 𝑆,𝑇 are 

connected in 𝒯.  



Graphs and tree-width 

Given a tree decomposition 𝒯 = 〈ℬ,ℰ〉 of Γ, 
define  

𝑤𝑤𝑤𝑤𝑤 𝒯 = max
𝑆∈ℬ

|𝑆|  − 1 

The treewidth of Γ is  
𝑡𝑡 Γ = min𝑤𝑤𝑤𝑤𝑤(𝒯) 

Where the minimum is taken over all possible 
tree decompositions of Γ. 



Graphs and tree-width 
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Tree-Width bounds Complexity 
Many NP-hard graph combinatorial problems 
are FPT in 𝑡𝑡(Γ): 

– Coloring 
– Hamiltonian cycle 
– Constraint solving 
– Bayesian inference 
– Computing equilibrium 
– more… 

 



 
 

 
 

 

Theorem [Meir,Z.,Elkind,Rosenschein, AAAI’13]:  
For any 𝒢 with an interaction graph 𝐻  

𝐶𝐶𝐶 𝒢 𝐻 ≤   𝑡𝑡 𝐻 + 1  
and this bound is tight for all non-trees. 

Tree-Width bounds the CoS 



• Consider a simple and superadditive game 
• Every two winning coalitions intersect 
• Every coalition induces a subtree 
• Thus all “winning subtrees” intersect at some 

node Z 
For example: 𝑣 1,2,3,𝟓 = 1 
and 𝑣({𝟓, 11}) = 1 
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A Simple Case 



• All winning coalitions intersect some node 𝑍 
• Pay 1 to every agent in 𝑍 
• Every winning coalition gets at least 1  
• Total payoff is at most 𝑍 ≤ 𝑡𝑡 𝐻 + 1  
 
𝑣 𝑆 = 1 → ∃𝑖 ∈ 𝑆 ∩ 𝑍 
If 𝑖 ∈ 𝑍 then 𝑥𝑖 = 1 so… 
𝑥 𝑆 ≥ 𝑥𝑖 ≥ 1 = 𝑣(𝑆) 
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A Simple Case 



Step 1 – Simple Games 
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{5,6,8,10} 

(w/o superadditivity or 
monotonicity) 
 
1. Traverse the nodes from the 

leaves up. 
2. Once the subtree contains a 

winning coalition, pay 1 to 
all agents in its root. 

3. Delete agents. 

(x1 x2  x3 x4 x5 x6 x7 x8 x9 x10) 
(  0 0 0 0 0 0 0 0 0 0   ) 1 1 1 

9 

2,9 



• Stability: every winning coalition intersects a node 
in the tree decomposition that was paid by the 
algorithm; thus gets at least 1. 

Lemma: For any simple 𝒢 with an 
interaction graph 𝐻, the algorithm 
produces a stable imputation 𝑥 
such that   
𝑥(𝑁) ≤ (𝑡𝑡(𝐻) + 1)𝑂𝑂𝑂(𝐺|𝐻) 



 Bounded payoff: let 𝑆𝑡 be the set of  
agents that were removed at time 𝑡.  
𝑆𝑡 contains a winning coalition 𝑊𝑡 

We can partition the agents into a coalition 
structure 𝐶𝐶 = { 𝑊𝑡 𝑡∈𝑇∗ , 𝐿}. 

𝑇∗ is the set of all times where sets were 
pruned by the algorithm. 

The value of 𝐶𝐶 is at most |𝑇∗|. 
𝑥(𝑁) ≤ (𝑡𝑡(𝐻)  +  1) |𝑇∗|  
           ≤ (𝑡𝑡(𝐻)  +  1)𝑂𝑂𝑂(𝐺|𝐻) 

 



Step 2 – The General Case 

1. Given a general (integer) game, split it into  
simple games and stabilize each individually. 

2. Sum the resulting stable imputations. 
    (roughly) 

v({1})  v({2})  v({3})  v({1,2})  v({1,3}) v({2,3}) v(N) 



Tightness 

a1 a2 

a4 a3 

c1 c2 

c4 c3 

z1 

z3 

z2 

b1 b2 

b4 b3 

W1,1 = {z1; a1; a4; b3; b1}  
W1,2 = {z1; a2; a3; b2; b4} 
W2,1 = {z2; b1; b4; c3; c1}  
W2,2 = {z2; b2; b3; c2; c4} 
W3,1 = {z3; c1; c4; a3; a1}  
W3,2 = {z3; c2; c3; a2; a4} 

Any two winning 
coalitions intersect: 
optimal value is 1. 



Tightness 

a1 a2 

a4 a3 

c1 c2 

c4 c3 

z1 

z3 

z2 

b1 b2 

b4 b3 

W1,1 = {z1; a1; a4; b3; b1}  
W1,2 = {z1; a2; a3; b2; b4} 
W2,1 = {z2; b1; b4; c3; c1}  
W2,2 = {z2; b2; b3; c2; c4} 
W3,1 = {z3; c1; c4; a3; a1}  
W3,2 = {z3; c2; c3; a2; a4} 

x(W1,1) ¸  1 
x(W1,2) ¸  1 xz1

 ̧  1 - ½ (x(A) + x(B)) 

A B  

C 

Z  

x(Z) ¸  3 - (x(A) + x(B) + x(C)) 

x(N) ¸  3 



Implications 

• The structure of the underlying social network 
determines stability of cooperation 

• Results can be applied on many games that are 
based on graphs/hypergraphs: 
– Induced subgraph games [Deng & Papadimitriou ’94];  
– Matching, Covering, and Coloring games [Deng et al. ’99];  
– Social distance games [Branzei & Larson ’11]; 
– Synergy coalition groups [Conitzer & Sandholm ’06]; 
– Marginal contribution nets [Ieong & Shoham ’05]. 
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