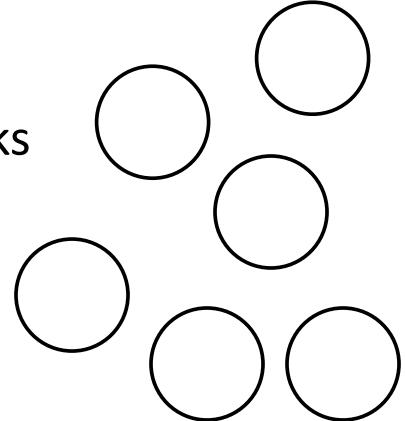
Cooperative Games

Yair Zick

Cooperative Games

Players divide into coalitions to perform tasks

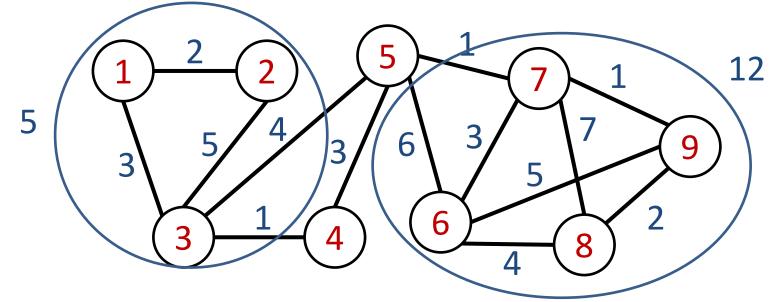
Coalition members can freely divide profits.



How should profits be divided?

Matching Games

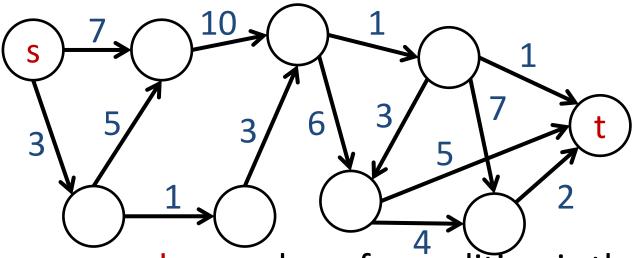
• We are given a weighted graph



- Players are nodes; value of a coalition is the value of the max. weighted matching on the subgraph.
- Applications: markets, collaboration networks.

Network Flow Games

• We are given a weighted, directed graph



- Players are edges; value of a coalition is the value of the max. flow it can pass from s to t.
- Applications: computer networks, traffic flow, transport networks.

Weighted Voting Games

- We are given a list of weights and a threshold.
- $(w_1, ..., w_n; q)$
- Each player *i* has a weight w_i; value of a coalition is 1 if its total weight is more than *q* (winning), and 0 otherwise (losing).
- Applications: models parliaments, UN security council, EU council of members.

Bankruptcy Problem

- In the Talmud:
- A business goes bankrupt, leaving several debts behind.
- Creditors want to collect the debt.
- The business has a net value of *L* to divide.
- Each creditor has a claim *c_i*
- Problem: claims total is more than the net value: $c_1 + \dots + c_n > L$
- How should *L* be divided?
- Applications: legal matters (divorce law, bankruptcy)

Cost Sharing

- A group of friends shares a cab on the way back from a club; how should taxi fare be divided?
- How to split a bill?
- A number of users need to connect to a central electricity supplier; how should the cost of setting up the electricity network be divided? (should a central location be charged as much as a far-off location?)

Cooperative Games

- A set of players $N = \{1, ..., n\}$
 - Characteristic function $v: 2^N \rightarrow \mathbb{R}$
- v(S) value of a coalition *S*.
- *CS* a partition of *N*; a coalition structure.
- $OPT(\mathcal{G}) = \max_{CS} \sum_{S \in CS} v(S)$
 - Imputation: a vector $\mathbf{x} \in \mathbb{R}^n$ satisfying efficiency: $\sum_{i \in S} x_i = v(S)$ for all S in CS

Cooperative Games

- A game $\mathcal{G} = \langle N, v \rangle$ is called **simple** if $v(S) \in \{0,1\}$
- G is **monotone** if for any $S \subseteq T \subseteq N$: $v(S) \leq v(T)$
- G is **superadditive** if for disjoint $S, T \subseteq N$: $v(S) + v(T) \leq v(S \cup T)$
- $G \text{ is convex if for } S \subseteq T \subseteq N \& i \in N \setminus T:$ $v(S \cup \{i\}) v(S) \le v(T \cup \{i\}) v(T)$

Dividing Payoffs in Cooperative Games

The core, the Shapley value and the Nucleolus

The Core

An imputation **x** is in the core if

$$\sum_{i\in S} x_i = x(S) \ge v(S), \forall S \subseteq N$$

- Each subset of players is getting at least what it can make on its own.
- A notion of stability; no one can deviate.

The Core

The core is a polyhedron: a set of vectors in \mathbb{R}^n that satisfies linear constraints

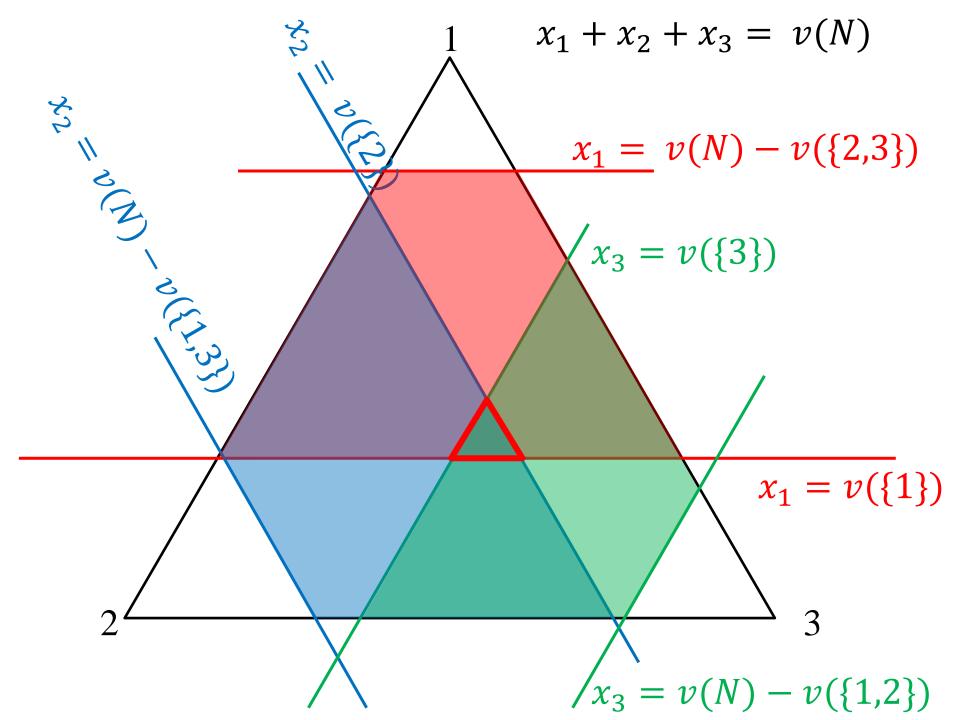
$$\sum_{i \in N} x_i = v(N)$$
$$\sum_{i \in S} x_i \ge v(S), \forall S \subseteq N$$

The Core

For three players, $N = \{1, 2, 3\}$ $x_1 + x_2 + x_3 = v(N)$

$x_i \ge v(\{i\}), \forall i \in N$

 $\begin{aligned} x_2 + x_3 &\geq v(\{2,3\}) \Rightarrow x_1 \leq v(N) - v(\{2,3\}) \\ x_1 + x_3 \geq v(\{1,3\}) \Rightarrow x_2 \leq v(N) - v(\{1,3\}) \\ x_1 + x_2 \geq v(\{1,2\}) \Rightarrow x_3 \leq v(N) - v(\{1,2\}) \end{aligned}$



Is the Core Empty?

The core can be empty...

- **Core-Empty: given a game** $\mathcal{G} = \langle N, v \rangle$, is the core of \mathcal{G} empty?
- Note that we are "cheating" here: a naïve representation of G is a list of 2^n vectors
- We are generally dealing with
- a. Games with a compact representation
- b. Oracle access to \mathcal{G}
- ... and obtaining algorithms that are poly(n)

Is the Core Empty?

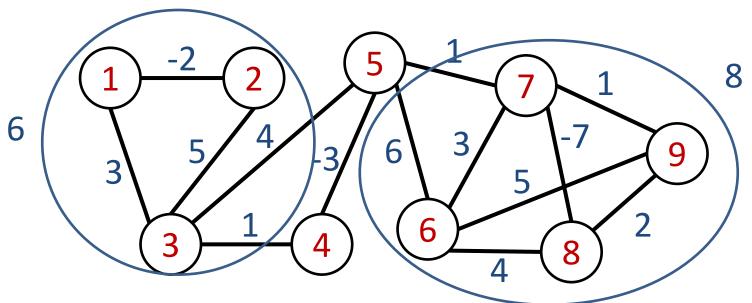
- Simple Games: a game is called simple if $v(S) \in \{0,1\}$ for all $S \subseteq N$.
- Coalitions with value 1 are winning;
- those with value 0 are losing.
- A player is called a veto player if she is a member of every winning coalition (can't win without her).

Core Nonemptiness: Simple Games

Theorem: let $\mathcal{G} = \langle N, v \rangle$ be a simple game; then $Core(\mathcal{G}) \neq \emptyset$ iff \mathcal{G} has veto players.

Corollary: Core-Empty is easy when restricted to weighted voting games.

- Theorem: Core-Empty is NP-hard
- Proof: we will show this claim for a class of games called induced-subgraph games



Players are nodes, value of a coalition is the weight of its induced subgraph.

- Lemma: the core of an induced subgraph game is not empty iff the graph has no negative cut.
- Proof: we will show first that if there is no negative cut, then the core is not empty.
- Consider the payoff division that assigns each node half the value of the edges connected to it

$$\phi_i = \frac{1}{2} \sum_{j \in N} w(i, j)$$

Need to show that $\phi(S) \ge v(S)$ for all $S \subseteq N$.

$$\phi(S) = \sum_{i \in S} \phi_i = \sum_{i \in S} \sum_{j \in N} \frac{1}{2} w(i, j)$$
$$= \sum_{i \in S} \sum_{j \in S} \frac{1}{2} w(i, j) + \sum_{i \in S} \sum_{j \in N \setminus S} \frac{1}{2} w(i, j)$$
$$= v(S) + \frac{1}{2} Cut(S, N \setminus S)$$

Since there are no negative cuts, the last expression is at least v(S)

Note: we haven't shown efficiency, i.e. $\phi(N) = v(N)$

Now, suppose that there is some negative cut; i.e. there is some $S \subseteq N$ such that

$$\sum_{i\in S}\sum_{j\in N\setminus S}w(i,j)<0$$

Take any imputation *x*; then

$$\sum_{i \in N} x_i = x(S) + x(N \setminus S) = v(N)$$
$$= \phi(S) + \phi(N \setminus S)$$

Therefore:

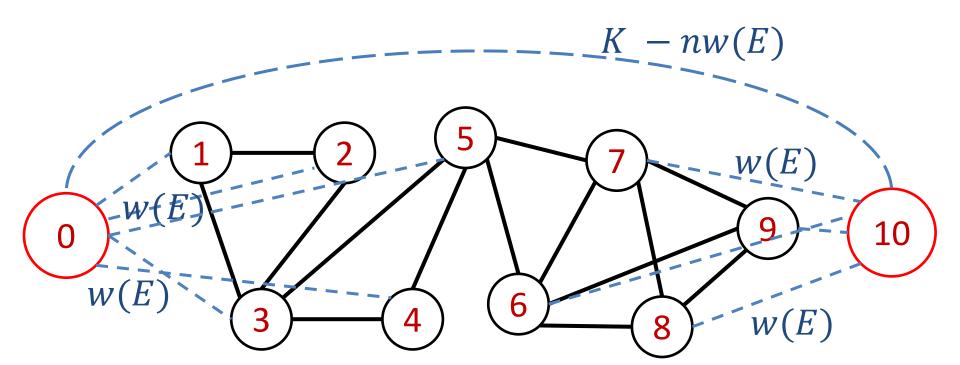
$$\begin{aligned} x(S) - v(S) + x(N \setminus S) - v(N \setminus S) &= \\ \phi(S) - v(S) + \phi(N \setminus S) - v(N \setminus S) &= \\ \sum_{i \in S} \sum_{j \in N \setminus S} \frac{1}{2} w(i,j) + \sum_{i \in N \setminus S} \sum_{j \in S} \frac{1}{2} w(i,j) &= \\ Cut(S, N \setminus S) < 0 \end{aligned}$$

So, it is either the case that x(S) < v(S) or $x(N \setminus S) < v(N \setminus S)$; hence x cannot be in the core.

- Lemma: deciding whether a graph has a negative cut is NP-complete.
- Proof: we reduce from the Max-Cut problem. Given a weighted, undirected graph $\Gamma = \langle V, E \rangle$, where $w(i, j) \ge 0$ for all $(i, j) \in E$, and an integer K, is there a cut $(S, V \setminus S)$ of Γ whose weight is more than K?

We write $V = \{1, ..., n\}$. We define a graph $\Gamma' = \langle V', E' \rangle$ with capacities as follows c(i, j) = -w(i, j) for all $(i, j) \in E$ c(0, j) = c(n + 1, j) = w(E) for all $j \in V$ c(0, n+1) = K - nw(E)K - nw(E)5 wfE 10 w(6

Any negative cut in this graph must separate 0 and n + 1. It must also have exactly n edges with capacity w(E). Therefore, it is negative iff the original graph has a cut with weight at least K.



Notes:

- this proof is one of the first complexity results on the stability of cooperative games, and appears in Deng & Papadimitriou's seminal paper "On the Complexity of Cooperative Solution Concepts" (1994).
- The payoff division ϕ_i is special: it is in fact the **Shapley value** for induced graph games.

Core Extensions

- What if the core is empty?
- The players cannot generate enough value to satisfy everyone.
- We can increase the total value with a subsidy

Core Extensions

As an LP:

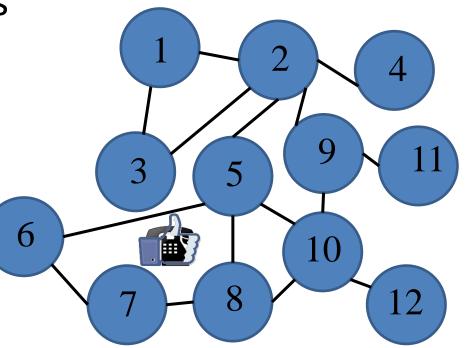
 $\min \alpha$
subject to:
 $x(N) = \alpha \cdot OPT(\mathcal{G})$
 $x(S) \ge v(S), \forall S \subseteq N$

If $\alpha = 1$ then the core is not empty.

The value of α in an optimal solution of the above LP is called **the cost of stability of** G, and referred to as CoS(G)

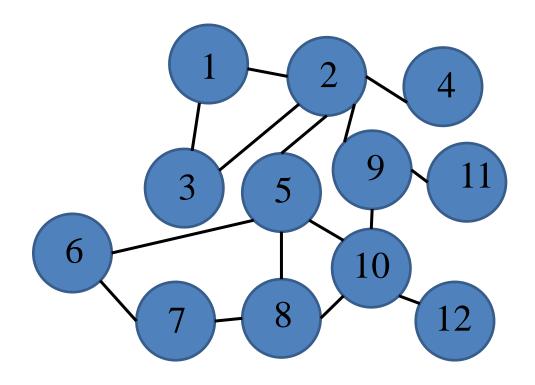
Restricted Cooperation

- Some coalitions may be impossible or unlikely due to practical reasons
- Interaction networks [Myerson '77]:
 - -Nodes are agents
 - Edges are social links
 - A coalition can form only if its agents are connected



Restricted cooperation - example

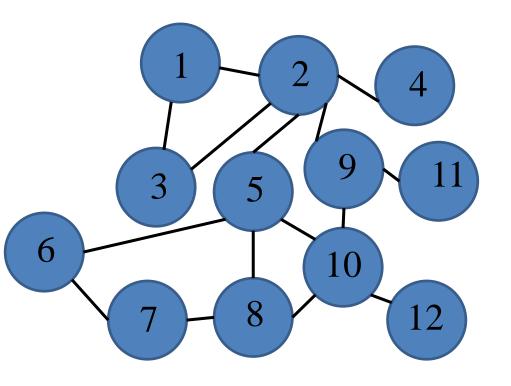
- The coalition {2,9,10,12} is allowed
- The coalition {3,6,7,8} is not allowed



Restricted cooperation increases stability

Theorem [Demange'04]: If the underlying network *H* is a *tree*, then the core of $G|_H$ is non-empty

Moreover, a core outcome can be computed efficiently



CoS with restricted cooperation

• Generally, CoS(G) can be as high as \sqrt{n}

- See example in [Bachrach et al.'09]

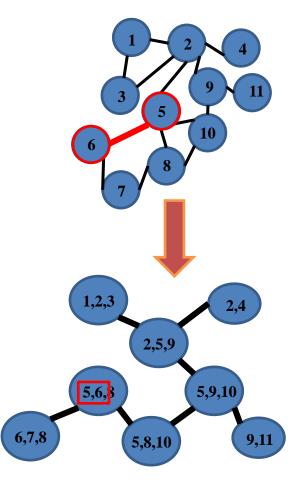
• By [Demange'04]: if *H* is a *tree*, the core is non-empty (i.e. $CoS(G|_H) = 1$)

What is the connection between network complexity and the cost of stability?

3

5

- Combinatorial measures to the "complexity" of a graph. E.g.:
 - –Average/max degree
 - -Expansion
 - -Connectivity
 - -Tree-width

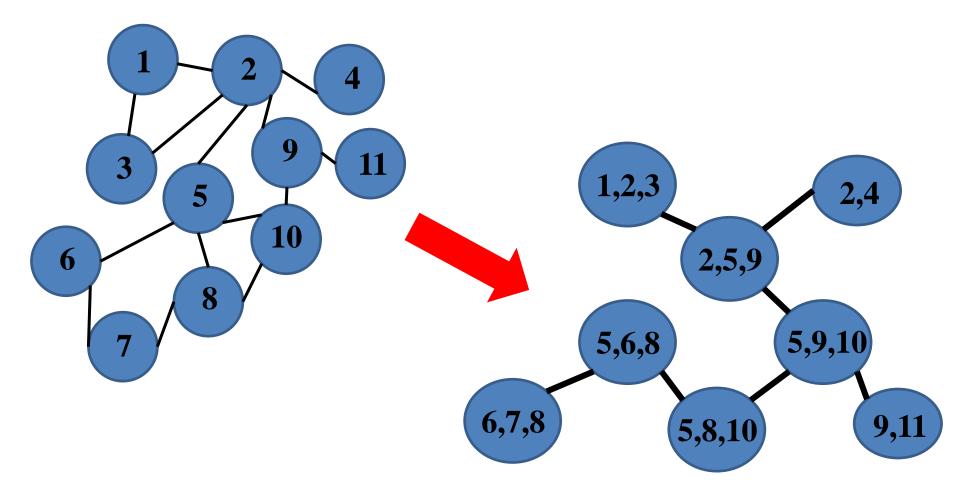


- Given a graph $\Gamma = \langle V, E \rangle$, a tree decomposition of Γ is a tree $\mathcal{T} = \langle \mathcal{B}, \mathcal{E} \rangle$ where
- The nodes of ${\mathcal T}$ are subsets of V
- If $(i, j) \in E$, then there exists some $S \in \mathcal{B}$ such that $i, j \in S$
- If $S, T \in \mathcal{B}$ contain $i \in V$, then S, T are connected in \mathcal{T} .

Given a tree decomposition $\mathcal{T} = \langle \mathcal{B}, \mathcal{E} \rangle$ of Γ , define

$$width(\mathcal{T}) = \max_{S \in \mathcal{B}} |S| - 1$$

- The treewidth of Γ is $tw(\Gamma) = \min width(\mathcal{T})$
- Where the minimum is taken over all possible tree decompositions of Γ .



Tree-Width bounds Complexity

- Many NP-hard graph combinatorial problems are FPT in $tw(\Gamma)$:
 - Coloring
 - Hamiltonian cycle
 - Constraint solving
 - Bayesian inference
 - -Computing equilibrium
 - -more...

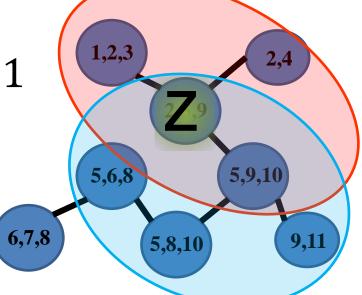
Tree-Width bounds the CoS

Theorem [Meir,Z.,Elkind,Rosenschein, AAAI'13]: For any \mathcal{G} with an interaction graph H $CoS(\mathcal{G}|_H) \leq tw(H) + 1$ and this bound is tight for all non-trees.

A Simple Case

- Consider a **simple** and **superadditive** game
- Every two winning coalitions intersect
- Every coalition induces a subtree
- Thus all "winning subtrees" intersect at some node Z

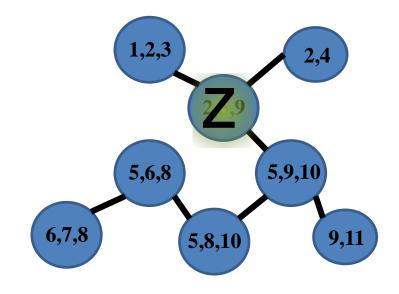
For example: $v(\{1,2,3,5\}) = 1$ and $v(\{5,11\}) = 1$



A Simple Case

- All winning coalitions intersect some node Z
- Pay 1 to every agent in Z
- Every winning coalition gets at least 1
- Total payoff is at most $|Z| \le tw(H) + 1$

```
v(S) = 1 \rightarrow \exists i \in S \cap Z
If i \in Z then x_i = 1 so...
x(S) \ge x_i \ge 1 = v(S)
```



Step 1 – Simple Games

- (w/o superadditivity or monotonicity)
- 1. Traverse the nodes from the leaves up.
- Once the subtree *contains* a winning coalition, pay 1 to all agents in its root.

6,7,8

5,6,8

3. Delete agents.

 (\mathbf{X}_1) X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10}) 0 0 0 1 0 0 1 0 (0 1) 2,9 1,2,3 2,4 9 5,8,10 9,11 $\{5, 6, 8, 10\}$

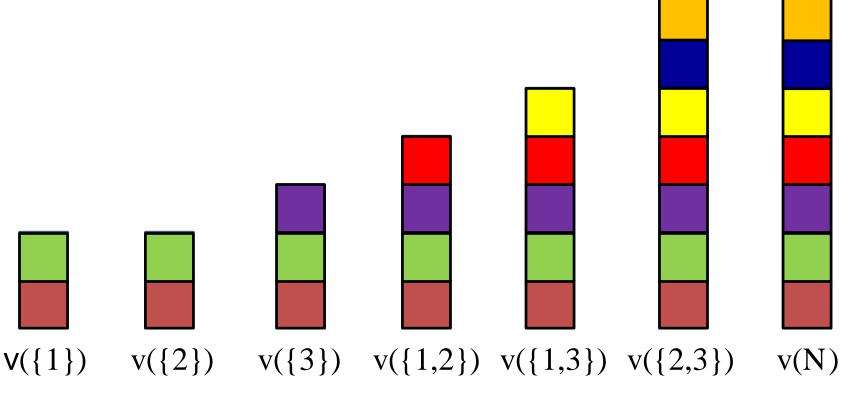
Lemma: For any simple G with an interaction graph H, the algorithm produces a stable imputation xsuch that $x(N) \leq (tw(H) + 1)OPT(G|_H)$

• **Stability:** every winning coalition intersects a node in the tree decomposition that was paid by the algorithm; thus gets at least 1.

- Bounded payoff: let S_t be the set of agents that were removed at time t.
 - S_t contains a winning coalition W_t
 - ♦ We can partition the agents into a coalition structure $CS = \{\{W_t\}_{t \in T^*}, L\}$.
 - ✤ T* is the set of all times where sets were pruned by the algorithm.
 - ♦ The value of CS is at most |T*|. $x(N) \leq (tw(H) + 1) |T^*|$ $\leq (tw(H) + 1)OPT(G|_H)$

Step 2 - The General Case

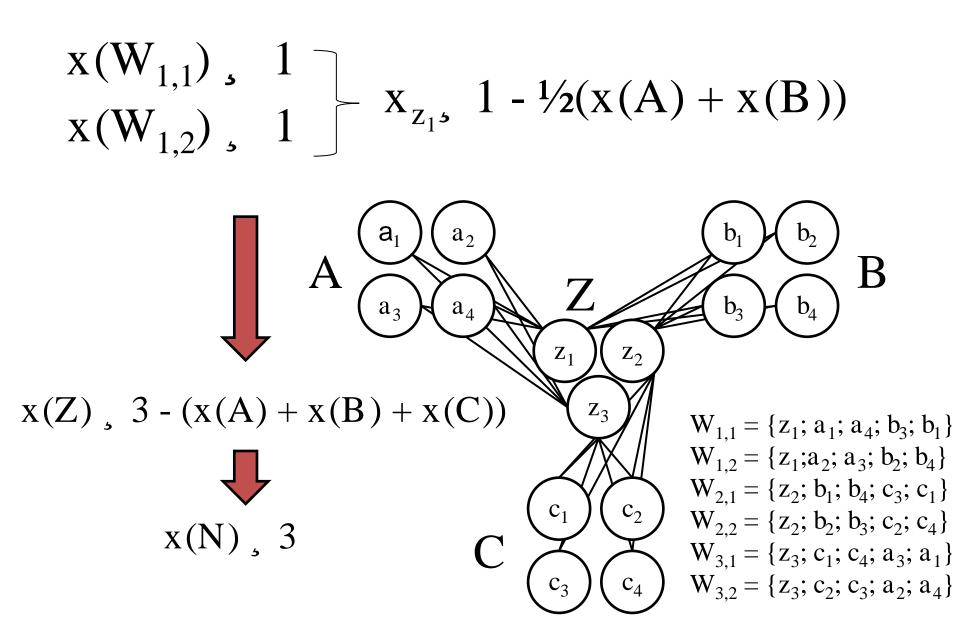
- 1. Given a general (integer) game, split it into simple games and stabilize each individually.
- 2. Sum the resulting stable imputations. (roughly)



Tightness

 a_1 a_2 D_1 a_4 a_3 b₃ O_{Δ} \mathbf{Z}_2 \mathbf{Z}_1 Z_3 $W_{1,1} = \{z_1; a_1; a_4; b_3; b_1\}$ Any two winning $W_{1,2} = \{z_1; a_2; a_3; b_2; b_4\}$ coalitions intersect: $W_{2,1} = \{z_2; b_1; b_4; c_3; c_1\}$ optimal value is 1. $W_{2,2} = \{z_2; b_2; b_3; c_2; c_4\}$ $W_{3,1} = \{z_3; c_1; c_4; a_3; a_1\}$ $W_{3,2} = \{z_3; c_2; c_3; a_2; a_4\}$

Tightness



Implications

- The structure of the underlying social network determines stability of cooperation
- Results can be applied on many games that are based on graphs/hypergraphs:
 - Induced subgraph games [Deng & Papadimitriou '94];
 - Matching, Covering, and Coloring games [Deng et al. '99];
 - Social distance games [Branzei & Larson '11];
 - Synergy coalition groups [Conitzer & Sandholm '06];
 - Marginal contribution nets [leong & Shoham '05].