CMU 15-896 SOCIAL CHOICE 4: VOTING RULES AS MLES

TEACHER:
ARIEL PROCACCIA

CONDORCET STRIKES AGAIN

- For Condorcet [1785], the purpose of voting is not merely to balance subjective opinions; it is a collective quest for the truth
- Enlightened voters try to judge which alternative best serves society
- For $m=2$ the majority opinion will very likely be correct
- Realistic in trials by jury or the pooling of expert opinions - or in human computation!

Motivation: Eterna

- Developed at CMU (Adrien Treuille) and Stanford
- Choose 8 RNA designs to synthesize
- Some designs are truly more stable than others
- The goal of voting is to compare the alternatives by true quality

CONDORCET'S NOISE MODEL

- True ranking of the alternatives
- Voting pairwise on alternatives, each comparison is correct with prob. $p>1 / 2$
- Results are tallied in a voting

	a	b	c
a	-	8	6
b	5	-	11
c	7	2	-

What is the Borda score of alternative b ?

CONDORCET'S ‘SOLUTION’

- Condorcet's goal: find "the most probable" ranking
- Condorcet suggested: take the majority opinion for each comparison; if a cycle forms, "successively delete the comparisons that have the least plurality"
- In example, we delete $c>a$ to get $a>b>c$

	a	b	c
a	-	8	6
b	5	-	11
c	7	2	-

CONDORCET's ‘SOLUTION'

- With four alternatives we get ambiguities
- In example, order of strength is $c>d, a>d, b>c, a>c$, $d \succ b, b \succ a$
- Delete $b \succ a \Rightarrow$ still cycle
- Delete $d>b \Rightarrow$ either a or b could be top-ranked

CONDORCET'S ‘SOLUTION’

- Did Condorcet mean we should reverse the weakest comparisons?
- Reverse $b>a$ and $d>b \Rightarrow$ we get $a>b>c>d$, with 89 votes
- $b>a>c>d$ has 90 votes (only reverse $d>b$)

	a	b	c	d
a	-	12	15	17
b	13	-	16	11
c	10	9	-	18
d	8	14	7	-

EXASPERATION?

- "The general rules for the case of any number of candidates as given by Condorcet are stated so briefly as to be hardly intelligible . . . and as no examples are given it is quite hopeless to find out what Condorcet meant" [Black 1958]
- "The obscurity and self-contradiction are without any parallel, so far as our experience of mathematical works extends ... no amount of examples can convey an adequate impression of the evils" [Todhunter 1949]

Young's SOLUTION

- Suppose true ranking is $a>b>c$; prob of observations:

$$
\binom{13}{8} p^{8}(1-p)^{5} \cdot\binom{13}{6} p^{6}(1-p)^{7} \cdot\binom{13}{11} p^{11}(1-p)^{2}
$$

- For $a>c>b$ prob. is:

$$
\binom{13}{8} p^{8}(1-p)^{5} \cdot\binom{13}{6} p^{6}(1-p)^{7} \cdot\binom{13}{2} p^{2}(1-p)^{11}
$$

	a	b	c
a	-	8	6
b	5	-	11
c	7	2	-

- Coefficients are identical
- Exponent of p is \#agreements, exponent of $1-p$ is \#disagreements

YOUNG'S SOLUTION

- $M=$ matrix of votes
- $\operatorname{Pr}[>\mid M]=\frac{\operatorname{Pr}[M \mid>] \cdot \operatorname{Pr}[>]}{\operatorname{Pr}[M]}$
- Assume uniform prior over $>, \operatorname{Pr}[>]=\frac{1}{m!}$
- Must maximize $\operatorname{Pr}[M \mid>]$, do this by minimizing \#disagreements with observed votes on pairs of alternatives
- This is the Kemeny rule

THE KEMENY RULE

- Theorem [Bartholdi, Tovey, Trick 1989]: Computing the Kemeny ranking is NPhard
- Typically formulated as an ILP: for every $e=(a, b) \in A^{2}, x_{e}=1$ iff a is ranked above b, and

$$
w_{e}=\left|\left\{i \in N \mid a>_{i} b\right\}\right|
$$

THE KEMENY RULE

Maximize $\sum_{e} x_{e} w_{e}$
Subject to
For all distinct $a, b \in A, x_{(a, b)}+x_{(b, a)}=1$
For all distinct $a, b, c \in A, x_{(a, b)}+x_{(b, c)}+x_{(c, a)} \leq 2$
For all distinct $a, b \in A, x_{(a, b)} \in\{0,1\}$

TEN YEARS LATER...

- Noise model = distribution over votes (rankings) for each true ranking
- Votes are drawn independently
- Which voting rules have a noise model for which they are MLEs of the true ranking?

Scoring rules as MLEWs

- Theorem [Conitzer and Sandholm 2005]: Any scoring rule is an MLE
- Proof:
- $x_{1} \succ^{*} x_{2} \succ^{*} \cdots \succ^{*} x_{m}=$ true ranking
- The probability that a voter i ranks each alternative x_{j} in position $r_{i j}$ is prop. to

$$
\prod_{j=1}^{m}(m+1-j)^{s_{r_{i j}}}
$$

Scoring rules as MLEWs

- Proof (continued):

。 $\operatorname{Pr}\left[M \mid<^{*}\right] \propto \prod_{i=1}^{n} \prod_{j=1}^{m}(m+1-j)^{s_{r i j}}$

- This is equal to

$$
\prod_{j=1}^{m}(m+1-j)^{\sum_{i=1}^{n} s_{r_{i j}}}
$$

- $m+1-j$ is positive and decreasing in j, so to maximize label alternative with k th highest score as $x_{k} ■$

MAXIMIN IS NOT AN MLEW

- Lemma: If there exist preference profiles $\overrightarrow{>}^{1}$ and $\vec{\succ}^{2}$ such that $f\left(\vec{\succ}^{1}\right)=f\left(\vec{\succ}^{2}\right) \neq f\left(\vec{\succ}^{3}\right)$, where $\vec{\succ}^{3}$ is their union, then f is not an MLE
- Proof: $\operatorname{Pr}\left[\vec{\succ}^{3} \mid \succ^{*}\right]=\operatorname{Pr}\left[\vec{\succ}^{1} \mid \succ^{*}\right] \cdot \operatorname{Pr}\left[\vec{\succ}^{2} \mid \succ^{*}\right] ■$
- Lemma: Any pairwise comparison graph whose weights are even-valued can be realized via votes
- Proof: To increase the weight on the edge (a, b), add the votes $a>b>x_{1}>\cdots>x_{m-2}$ and $x_{m-2}>\cdots>x_{1}>a>b ■$

15896 Spring 2015: Lecture 4

MAXIMIN IS NOT AN MLEW

- Theorem [Conitzer and Sandholm 2005]: Maximin is not an MLE
- Proof:

SOME EXPERIMENTS

Furthest from solution
(Most moves)

[Mao, P, Chen 2013]

