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Condorcet strikes again 

• For Condorcet [1785], the purpose of voting is 
not merely to balance subjective opinions; it is a 
collective quest for the truth 

• Enlightened voters try to judge which alternative 
best serves society 

• For 𝑚 = 2 the majority opinion will very likely 
be correct 

• Realistic in trials by jury or the pooling of expert 
opinions — or in human computation! 
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Motivation: EteRNA 

• Developed at CMU (Adrien 
Treuille) and Stanford 

• Choose 8 RNA designs to 
synthesize 

• Some designs are truly more 
stable than others 

• The goal of voting is to 
compare the alternatives by 
true quality 
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Condorcet’s noise model 

• True ranking of the alternatives 
• Voting pairwise on alternatives, 

each comparison is correct with 
prob. 𝑝 > 1/2 

• Results are tallied in a voting 
matrix 
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𝑎 𝑏 𝑐 

𝑎 - 8 6 

𝑏 5 - 11 

𝑐 7 2 - 

 
What is the Borda score of 
alternative 𝑏? 
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Condorcet’s ‘solution’ 

• Condorcet’s goal: find “the most 
probable” ranking 

• Condorcet suggested: take the 
majority opinion for each 
comparison; if a cycle forms, 
“successively delete the comparisons 
that have the least plurality” 

• In example, we delete 𝑐 ≻ 𝑎 to get 
𝑎 ≻ 𝑏 ≻ 𝑐 
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𝑎 𝑏 𝑐 

𝑎 - 8 6 

𝑏 5 - 11 

𝑐 7 2 - 

𝑎 

𝑏 𝑐 
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Condorcet’s ‘solution’ 

• With four alternatives we get 
ambiguities 

• In example, order of strength is 
𝑐 ≻ 𝑑, 𝑎 ≻ 𝑑, 𝑏 ≻ 𝑐, 𝑎 ≻ 𝑐, 
𝑑 ≻ 𝑏, 𝑏 ≻ 𝑎 

• Delete 𝑏 ≻ 𝑎 ⇒ still cycle 
• Delete 𝑑 ≻ 𝑏 ⇒ either 𝑎 or 𝑏 

could be top-ranked 
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𝑎 𝑏 𝑐 𝑑 

𝑎 - 12 15 17 

𝑏 13 - 16 11 

𝑐 10 9 - 18 

𝑑 8 14 7 - 

𝑎 

𝑏 𝑐 

𝑑 
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Condorcet’s ‘solution’ 

• Did Condorcet mean we should 
reverse the weakest 
comparisons? 

• Reverse 𝑏 ≻ 𝑎 and 𝑑 ≻ 𝑏 ⇒ we 
get 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑, with 89 
votes 

• 𝑏 ≻ 𝑎 ≻ 𝑐 ≻ 𝑑 has 90 votes 
(only reverse 𝑑 ≻ 𝑏) 
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𝑎 𝑏 𝑐 𝑑 

𝑎 - 12 15 17 

𝑏 13 - 16 11 

𝑐 10 9 - 18 

𝑑 8 14 7 - 

𝑎 

𝑏 𝑐 

𝑑 
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Exasperation? 
• “The general rules for the case of any number of 

candidates as given by Condorcet are stated so 
briefly as to be hardly intelligible . . . and as no 
examples are given it is quite hopeless to find 
out what Condorcet meant” [Black 1958] 

• “The obscurity and self-contradiction are without 
any parallel, so far as our experience of 
mathematical works extends ... no amount of 
examples can convey an adequate impression of 
the evils” [Todhunter 1949] 
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Young’s solution 

• Suppose true ranking is 𝑎 ≻ 𝑏 ≻ 𝑐; 
prob of observations: 

13
8

 𝑝8 1 − 𝑝 5 ⋅
13
6

𝑝6 1 − 𝑝 7 ⋅
13
11

𝑝11 1 − 𝑝 2 

• For 𝑎 ≻ 𝑐 ≻ 𝑏 prob. is: 
13
8  𝑝8 1 − 𝑝 5 ⋅

13
6 𝑝6 1 − 𝑝 7 ⋅

13
2 𝑝2 1 − 𝑝 11 

• Coefficients are identical 
• Exponent of 𝑝 is #agreements, 

exponent of 1 − 𝑝 is #disagreements 
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𝑎 𝑏 𝑐 

𝑎 - 8 6 

𝑏 5 - 11 

𝑐 7 2 - 
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Young’s solution 
• 𝑀 = matrix of votes 

• Pr ≻ 𝑀 = Pr 𝑀 ≻ ⋅Pr [≻]
Pr 𝑀

 

• Assume uniform prior over ≻, Pr ≻ = 1
𝑚!

 
• Must maximize Pr 𝑀 ≻ , do this by 

minimizing #disagreements with observed 
votes on pairs of alternatives 

• This is the Kemeny rule 
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• Theorem [Bartholdi, Tovey, Trick 1989]: 
Computing the Kemeny ranking is NP-
hard 

• Typically formulated as an ILP: for every 
𝑒 = 𝑎, 𝑏 ∈ 𝐴2, 𝑥𝑒 = 1 iff 𝑎 is ranked 
above 𝑏, and  

𝑤𝑒 =  𝑖 ∈ 𝑁  𝑎 ≻𝑖 𝑏 | 
  

The Kemeny rule 
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The Kemeny rule 
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Maximize ∑ 𝑥𝑒𝑤𝑒𝑒  
Subject to 
For all distinct 𝑎, 𝑏 ∈ 𝐴, 𝑥 𝑎,𝑏 + 𝑥 𝑏,𝑎 = 1 
For all distinct 𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝑥 𝑎,𝑏 + 𝑥 𝑏,𝑐 + 𝑥 𝑐,𝑎 ≤ 2 
For all distinct 𝑎, 𝑏 ∈ 𝐴, 𝑥 𝑎,𝑏 ∈ {0,1} 
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Ten years later... 
• Noise model = distribution 

over votes (rankings) for 
each true ranking 

• Votes are drawn 
independently 

• Which voting rules have a 
noise model for which they 
are MLEs of the true 
ranking? 
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Turning 
the 

question 
on its head 
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Scoring rules as MLEWs 

• Theorem [Conitzer and Sandholm 2005]: 
Any scoring rule is an MLE 

• Proof: 
o 𝑥1 ≻∗ 𝑥2 ≻∗ ⋯ ≻∗ 𝑥𝑚 = true ranking 
o The probability that a voter 𝑖 ranks each 

alternative 𝑥𝑗 in position 𝑟𝑖𝑖 is prop. to  

� 𝑚 + 1 − 𝑗 𝑠𝑟𝑖𝑖

𝑚

𝑗=1
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Scoring rules as MLEWs 

• Proof (continued): 
o Pr 𝑀 ≺∗ ∝ ∏ ∏ 𝑚 + 1 − 𝑗 𝑠𝑟𝑖𝑖𝑚

𝑗=1
𝑛
𝑖=1  

o This is equal to 

�(𝑚 + 1 − 𝑗)∑ 𝑠𝑟𝑖𝑖
𝑛
𝑖=1

𝑚

𝑗=1

 

o 𝑚 + 1 − 𝑗 is positive and decreasing in 𝑗, so 
to maximize label alternative with 𝑘th 
highest score as 𝑥𝑘 ∎ 
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Maximin is not an MLEW 

• Lemma: If there exist preference profiles ≻1 and 
≻2 such that 𝑓 ≻1 = 𝑓 ≻2 ≠ 𝑓 ≻3 , where ≻3 
is their union, then 𝑓 is not an MLE 

• Proof: Pr ≻3 ≻∗ = Pr ≻1 ≻∗ ⋅ Pr ≻2 ≻∗  ∎  
• Lemma: Any pairwise comparison graph whose 

weights are even-valued can be realized via votes 
• Proof: To increase the weight on the edge (𝑎, 𝑏), 

add the votes 𝑎 ≻ 𝑏 ≻ 𝑥1 ≻ ⋯ ≻ 𝑥𝑚−2 and 
𝑥𝑚−2 ≻ ⋯ ≻ 𝑥1 ≻ 𝑎 ≻ 𝑏 ∎ 
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≻1 

Maximin is not an MLEW 

• Theorem [Conitzer and Sandholm 2005]: 
Maximin is not an MLE 

• Proof:  
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Some experiments 
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[Mao, P, Chen 2013] 
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