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Motivation 

• Firm is marketing a new product 
• Collect data on the social network 
• Choose set 𝑆 of early adopters and market 

to them directly 
• Customers in 𝑆 generate a cascade of 

adoptions 
• Question: How to choose 𝑆? 
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Influence functions 

• Assume: finite graph, progressive process 
• Fixing a cascade model, define influence function 
• 𝑓 𝑆 = expected #active nodes at the end of the 

process starting with 𝑆 
• Maximize 𝑓(𝑆) over sets 𝑆 of size 𝑘 
• Theorem [Kempe et al. 2003]: Under the general 

cascade model, influence maximization is NP-
hard to approximate to a factor of 𝑛1−𝜖 for any 
𝜖 > 0 
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𝑥𝑖 

Proof of theorem 
• SET COVER: subsets 𝑆1, … , 𝑆𝑚 of 
𝑈 = 𝑢1, … , 𝑢𝑡 ; cover of size 𝑘? 

• Bipartite graph: 𝑢1, … , 𝑢𝑡 on one side, 
𝑆1, … , 𝑆𝑚 and 𝑥1, … , 𝑥𝑇 for T = 𝑡𝑐 on 
the other 

• 𝑢𝑖 becomes active if 𝑆𝑗 ∋ 𝑢𝑖 is active 
• 𝑥𝑗 becomes active if 𝑢1, … , 𝑢𝑡 are active 
• Min set cover of size 𝑘 ⇒ 𝑇 + 𝑡 + 𝑘 

active 
• Min set cover of size > 𝑘 ⇒ < 𝑡 + 𝑘 

active ∎ 
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Submodularity for approximation 

• Try to identify broad subclasses where good approx is 
possible 

• 𝑓 is submodular if for 𝑋 ⊆ 𝑌, 𝑣 ∉ 𝑌, 
𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌) 

• 𝑓 is monotone if for 𝑋 ⊆ 𝑌, 𝑓 𝑋 ≤ 𝑓(𝑌) 
• Reduction gives 𝑓 that is not submodular 
• Theorem [Nemhauser et al. 1978]: 𝑓 monotone and 

submodular, 𝑆∗ optimal 𝑘-element subset, 𝑆 obtained by 
greedily adding 𝑘 elements that maximize marginal 
increase; then  

𝑓 𝑆 ≥ 1 −
1
𝑒

𝑓(𝑆∗) 
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independent cascade model 

• Reminder of model: 
o For each 𝑢, 𝑣 ∈ 𝐸 there is a weight 𝑝𝑢𝑢 
o When a node 𝑢 becomes activated it has one 

chance to activate each neighbor 𝑣 with 
probability 𝑝𝑢𝑢  

• Theorem [Kempe et al. 2003]: Under the 
independent cascade model: 
o Influence maximization is NP-hard 
o The influence function 𝑓 is submodular 
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Proof of NP-hardness 

• Almost the same proof as before 
• SET COVER: subsets 𝑆1, … , 𝑆𝑚 of 
𝑈 = 𝑢1, … , 𝑢𝑡 ; cover of size 𝑘? 

• Bipartite graph: 𝑢1, … , 𝑢𝑡 on one 
side, 𝑆1, … , 𝑆𝑚 on the other 

• If 𝑢𝑖 ∈ 𝑆𝑗 then there is an edge 
(𝑆𝑗, 𝑢𝑖) with weight 1 

• Min SC of size 𝑘 ⇒ 𝑡 + 𝑘 
• Min SC of size > 𝑘 ⇒ < 𝑡 + 𝑘 

active ∎ 
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Proof of submodularity 

• Lemma: If 𝑓1, … , 𝑓𝑟 are submodular functions, 
𝑐1, … , 𝑐𝑟 ≥ 0, then 𝑓 = ∑ 𝑐𝑖𝑓𝑖𝑟

𝑖=1  is a 
submodular function 

• Proof: Let 𝑋 ⊆ 𝑌 and 𝑣 ∉ 𝑌, then 
 

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 − (𝑓 𝑌 ∪ 𝑣 − 𝑓 𝑌 ) 

= �𝑐𝑖 𝑓𝑖 𝑋 ∪ 𝑣 − 𝑓𝑖 𝑋 − (𝑓𝑖 𝑌 ∪ 𝑣 − 𝑓𝑖 𝑌 ) ≥ 0
𝑟

𝑖=1
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Proof of submodularity 

• Key idea: for each (𝑢, 𝑣) we flip a coin of 
bias 𝑝𝑢𝑢 in advance  

• Let 𝛼 denote a particular one of the 2|𝐸| 
possible coin flip combinations 

• 𝑓𝛼 𝑆 =  activated nodes with 𝑆 as seed 
nodes and 𝛼 coin flips 

• 𝑣 ∈ 𝑓𝛼(𝑆) iff 𝑣 is reachable from 𝑆 via live 
edges 
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Proof of submodularity 

• 𝑓𝛼 is submodular 
• 𝑓(𝑆) = ∑ Pr 𝛼 ⋅ 𝑓𝛼(𝑆)𝛼 , 

that is, 𝑓 is a nonnegative 
weighted sum of 
submodular functions 

• By the lemma, 𝑓 is 
submodular  ∎ 
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Linear threshold model 
• Reminder of model: 

o Nonnegative weight 𝑤𝑢𝑢 for each edge 
𝑢, 𝑣 ∈ 𝐸; 𝑤𝑢𝑢 = 0 otherwise 

o Assume ∀𝑣 ∈ 𝑉, ∑ 𝑤𝑢𝑢 ≤ 1𝑢  
o Each 𝑣 ∈ 𝑉 has threshold 𝜃𝑣 chosen 

uniformly at random in [0,1] 
o 𝑣 becomes active if  

� 𝑤𝑢𝑢 ≥ 𝜃𝑣
active 𝑢

 

11 



15896 Spring 2015: Lecture 24 

Linear threshold model 
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Linear threshold model 
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Poll 2: Given that 𝑢 is 
inactive, prob. it  
becomes active after  
𝑣 becomes active 
1. 1/6 
2. 1/3 
3. 1/2 
4. 2/3 
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Linear threshold model 

• Theorem [Kempe et al. 2003]: 
Under the linear threshold 
model: 
o Influence maximization is NP-

hard 
o The influence function 𝑓 is 

submodular 
• Difficulty: fixing the coin flips 
𝛼, 𝑓𝛼 is not submodular 
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Proof of submodularity 

• Each 𝑣 chooses at most one of its incoming 
edges at random; (𝑢, 𝑣) selected with prob. 
𝑤𝑢𝑢, and none with prob. 1 − ∑ 𝑤𝑢𝑢𝑢  

• If we can show that these choices of live 
edges induce the same influence function 
as the linear threshold model, then the 
theorem follows from the same arguments 
as before 
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Proof of submodularity 
• We sketch the equivalence of the two models 
• Linear threshold: 

o 𝐴𝑡 = active nodes at end of iteration 𝑡 

o If 𝑣 ∉ 𝐴𝑡, then Pr 𝑣 ∈ 𝐴𝑡+1 =
∑ 𝑤𝑢𝑢𝑢∈𝐴𝑡∖𝐴𝑡−1
1−∑ 𝑤𝑢𝑢𝑢∈𝐴𝑡−1

 

• Live edges: 
o At every times step, determine whether 𝑣’s live edge 

comes from current active set 
o If not, the source of the live edge remains unknown, 

subject to being outside the active set 
o Same probability as before  ∎ 
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Progressive vs. nonprogressive 

• Nonprogressive threshold 
model is identical except that 
at each round 𝑣 chooses 𝜃𝑣𝑡 
u.a.r. in [0,1] 

• Suppose process runs for 𝑇 
steps 

• At each step 𝑡 ≤ 𝑇, can target 
𝑣 for activation; 𝑘 
interventions overall 

• Goal: ∑ #rounds 𝑣 was active𝑣  
• Reduces to progressive case  
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