

BACKGROUND

- Spread of ideas and new behaviors through a population
- Examples:
 - Religious beliefs and political movements
 - Adoption of technological innovations
 - Success of new product
- Process starts with early adopters and spreads through the social network

NETWORKED COORDINATION GAMES

- Simple model for the diffusion of ideas and innovations
- Social network is undirected graph G = (V, E)
- Choice between old behavior A and new behavior B
- Parametrized by $q \in (0,1)$

NETWORKED COORDINATION GAMES

- Rewards for u and v when $(u, v) \in E$:
 - \circ If both choose A, they receive q
 - \circ If both choose B, they receive 1-q
 - Otherwise both receive 0
- Overall payoff to v = sum of payoffs
- ullet Denote $d_{oldsymbol{v}}=$ degree of $oldsymbol{v},\,d_{oldsymbol{v}}^{oldsymbol{X}}=\# ext{neighbors}$ playing $oldsymbol{X}$
- Payoff to v from choosing A is qd_v^A ; reward from choosing B is $(1-q)d_v^B$
- $v \text{ adopts } B \text{ if } d_v^B \ge q d_v \Rightarrow q \text{ is a threshold}$

CASCADING BEHAVIOR

- Each node simultaneously updates its behavior in discrete time steps t=1,2,...
- Nodes in S initially adopt B
- $h_q(S) = \text{set of nodes adopting } B \text{ after one }$
- $h_q^k(S)$ = after k rounds of updates
- Question: When does a small set of nodes convert the entire population?

CONTAGION THRESHOLD

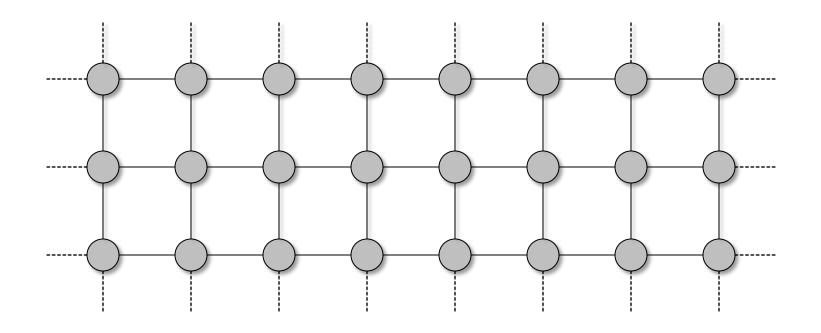
- V is countably infinite and each d_v is finite
- v is converted by S if $\exists k$ s.t. $v \in h_q^k(S)$
- S is contagious if every node is converted
- It is easier to be contagious when q is small
- Contagion threshold of $G = \max q$ s.t. \exists finite contagious set

EXAMPLE

$$q = \frac{1}{2}$$

Poll 1: What is the contagion threshold of *G*?

EXAMPLE



Poll 2: What is the contagion threshold of *G*?

PROGRESSIVE PROCESSES

- Nonprogressive process: Nodes can switch from A to B or B to A
- Progressive process: Nodes can only switch from A to B
- As before, a node v switches to B if a q fraction of its neighbors N(v) follow B
- $\bar{h}_q(S) = \text{set of nodes adopting } B$ in progressive process; define $\bar{h}_q^k(S)$ as before

PROGRESSIVE PROCESSES

- With progressive processes intuitively the contagion threshold should be at least as high
- Theorem [Morris, 2000]: For any graph G, $\exists \text{finite contagious set wrt } h_a \iff \exists \text{finite}$ contagious set wrt h_a
- I.e., the contagion threshold is identical under both models

PROOF OF THEOREM

- Lemma: $\bar{h}_q^k(X) = h_q(\bar{h}_q^{k-1}(X)) \cup X$
- Proof:

$$_{\circ}\quad \overline{h}_{q}^{k}(X)=(\overline{h}_{q}^{k}(X)\setminus \overline{h}_{q}^{k-1}(X))\cup (\overline{h}_{q}^{k-1}\setminus X)\cup X$$

- $\quad \text{ For every } v \in \overline{h}_q^{k-1} \setminus X, \ v \in h_q\left(\overline{h}_q^{k-1}(X)\right),$ because ν has at least as many B neighbors as when it converted
 - Clearly $X \subseteq h_q\left(\overline{h}_q^{k-1}(X)\right) \cup X \blacksquare$

PROOF OF THEOREM

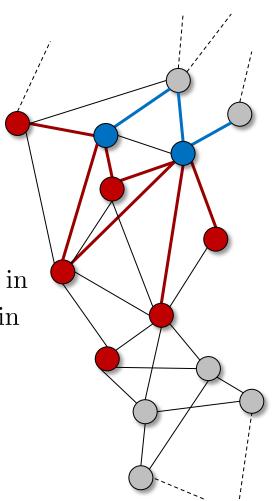
- Enough to show: given a set S that is contagious wrt h_a , there is a set T that is contagious wrt h_a
- Let ℓ s.t. $S \cup N(S) \subseteq \overline{h}_q^{\ell}$; this is our T
- For $k > \ell$, $\overline{h}_a^k(S) = h_a(\overline{h}_a^{k-1}(S)) \cup S$ by the lemma
- Since $N(S) \subseteq \overline{h}_a^{k-1}(S)$, $S \subseteq h_a(\overline{h}_a^{k-1}(S))$, and hence $\bar{h}_a^k(S) = h_a(\bar{h}_a^{k-1}(S))$
- By induction, all $k > \ell$, $\bar{h}_{a}^{k}(S) = h_{a}^{k-\ell}(\bar{h}_{a}^{\ell}) = h_{a}^{k-\ell}(T)$

CONTAGION THRESHOLD $\leq 1/2$

- Saw a graph with contagion threshold 1/2
- Does there exist a graph with contagion threshold > 1/2?
- The previous theorem allows us to focus on the progressive case
- Theorem [Morris, 2000]: For any graph G, the contagion threshold $\leq 1/2$

PROOF OF THEOREM

- Let q > 1/2, finite S
- Denote $S_j = \overline{h}_q^j(S)$
- $\delta(X) = \text{set of edges with exactly}$ one end in X
- If $S_{j-1} \neq S_j$ then $|\delta(S_j)| < |\delta(S_{j-1})|$
 - $\text{For each } v \in S_j \setminus S_{j-1}, \text{ its edges into } S_{j-1} \text{ are in } \\ \delta(S_{j-1}) \setminus \delta(S_j), \text{ and its edges into } V \setminus S_j \text{ are in } \\ \delta(S_j) \setminus \delta(S_{j-1})$
 - More of the former than the latter because v converted and q > 1/2
- $\delta(S)$ is finite and $\delta(S_i) \geq 0$ for all j



MORE GENERAL MODELS

- Directed graphs to model asymmetric influence
- Redefine $N(v) = \{u \in V : (u, v) \in E\}$
- Assume progressive contagion
- Node is active if it adopts *B*; activated if switches from *A* to *B*

LINEAR THRESHOLD MODEL

- Nonnegative weight w_{uv} for each edge $(u,v) \in E$; $w_{uv} = 0$ otherwise
- Assume $\forall v \in V$, $\sum_{u} w_{uv} \leq 1$
- Each $v \in V$ has threshold θ_v
- \bullet v becomes active if

$$\sum_{\text{active } u} w_{uv} \ge \theta_v$$

GENERAL THRESHOLD MODEL

- Linear model assumes additive influences
 - Switch if two co-workers and three family members switch?
- v has a monotonic function $g_v(\cdot)$ defined on subsets $X \subseteq N(v)$
- v becomes activated if the activated subset $X \subseteq N(v)$ satisfies $g_v(X) \ge \theta_v$

THE CASCADE MODEL

- When $\exists (u, v) \in E$ s.t. u is active and v is not, u has one chance to activate v
- v has an incremental function $p_v(u,X) =$ probability that u activates v when Xhave tried and failed
- Special cases:
 - Diminishing returns: $p_{\nu}(u, X) \geq p_{\nu}(u, Y)$ when $X \subseteq Y$
 - Independent cascade: $p_{\nu}(u,X) = p_{\mu\nu}$