CMU 15-896 MECHANISM DESIGN 1: WITH MONEY

TEACHER:
ARIEL PROCACCIA

MECHANISM DESIGN

- A subfield of game theory that focuses on designing the rules of the game to achieve desirable properties
- We will only cover a small fraction of the very basics

Why MD? Olympic Badminton!

http://youtu.be/hdK4vPz0qaI

Tuming 5 Inwisible Hamb
Computation, Economics, and Game Theory

> = AGT lecture videos and notes

AGT course (Weeks 3 and 4) *
Olympic badminton is not incentive compatible -revisited
October 18, 2013 by Arial Procactio | Ed

More than a year ago a badminton scandal during the London 2012 Olympics rocked the really-care-about-mechanism-design corner of the blogosphere. Bobby Kleinberg reported:
(13) The competition is structured in two stages: a round-robin stage in which the teams compete to earn placement in a second-stage singleelimination tournament. The second-seeded team in the competition, Tian Qing and Zhas Yunlei of Chins, suffered an upset loss to a Danian lawest-seeded teams in the rescond-stage tournament. At that point it became advantageous for the remaining teams that had already became advantageous for the remaining tesms that had already arder to avoid being paired against Qing and Yunlei in the firat round of Neroond atoge Spatator watha in tnatration and firbaliar asd andind stage. Spetston whet into the ret and hit ahote out of a athietes delberstaly sened into the net and nit shots out of ounds in an efrort to lose the matan. Olympic officisls arterwary decided to fivquality the offerding taems from the compettion.

Bobby asked whether it's time for the International Olympic Committee to start reading research papers on mechanism design. A year ago the answer was "probably not", but a recent eaper may sson have members of the IOC scrambling to get their math degrees. There are two interesting things about this paper, written by Marc Pauly and published in Social Choice and Welfare.

The first interesting thing is, well, the results. Pauly considers competition formats in which the competing teams (or players) are partitioned into two subsets. In the

Recently Popular

 Posts
Algorthms

Is came theory usenti?
A thank you to MSR/EVC John Nast's Letter to the NSA Economistr and Complexty About
Should tachnical emrors disquality conterence popers?

Archives

September 2014
August 2014
June 2014
Mas 2014
Aprll
2014
Apebruary 2014
Fanuary 2014
December 2013
Nocember 2013
Octoper 2013
october 2013
September 2013
Auguat 20
Juy 2013
Jue 2013
April 2013
March 2013
February 2013

Soc Choice Welf (2014) 43:29-46
DOI 10.1007/s00355-013-0767-6

ORIGINAL PAPER

Can strategizing in round-robin subtournaments be avoided?

Marc Pauly

Received: 20 December 2012 / Accepted: 5 September 2013 / Published online: 4 October 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract

This paper develops a mathematical model of strategic manipulation in complex sports competition formats such as the soccer world cup or the Olympic games. Strategic manipulation refers here to the possibility that a team may lose a match on purpose in order to increase its prospects of winning the competition. In particular, the paper looks at round-robin tournaments where both first- and secondranked players proceed to the next round. This standard format used in many sports gives rise to the possibility of strategic manipulation, as exhibited recently in the 2012 Olympic games. An impossibility theorem is proved which demonstrates that under a number of reasonable side-constraints, strategy-proofness is impossible to obtain.

SECOND-PRICE AUCTION

- Bidders submit sealed bids
- One good allocated to highest bidder
- Winner pays price of second highest bid!!
- Bidder's utility $=$ value minus payment when winning, zero when losing
- Amazing observation: Second-price auction is strategyproof; bidding true valuation is a dominant strategy!!

STRATEGYPROOFNESS: BIDDING HIGH

- Three cases based on highest other bid (blue dot)
- Higher than bid: lose before and after
- Lower than valuation: win before and after, pay same
- Between bid and valuation: lose before, win after but overpay

STRATEGYPROOFNESS: BIDDING LOW

- Three cases based on highest other bid (blue dot)
- Higher than valuation: lose before and after
- Lower than bid: win before and after, pay the same
- Between valuation and bid: win before with profit, lose after

```
lose, as before
```

```
lose, as before
```


Vickrey-Clarke-Groves Mechanism

- $N=$ set of bidders, $M=$ set of m items
- Each bidder has a combinatorial valuation function $v_{i}: 2^{M} \rightarrow \mathbb{R}^{+}$
- Choose an allocation $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$ to maximize social welfare: $\sum_{i \in N} v_{i}\left(A_{i}\right)$
- If the outcome is \boldsymbol{A}, bidder i pays

$$
\max _{\boldsymbol{A}^{\prime}} \sum_{j \neq i} v_{j}\left(A_{j}^{\prime}\right)-\sum_{j \neq i} v_{j}\left(A_{j}\right)
$$

VCG Mechanism

- Suppose we run VCG and there are:
- 1 item, denoted a
- 2 bidders
- $v_{1}(\{a\})=7, v_{2}(\{a\})=3$

What is the payment of player 1 in this example?

VCG MECHANISM

- Theorem: VCG is strategyproof
- Proof: When the outcome is A, the utility of bidder i is

$$
\begin{aligned}
& v_{i}\left(A_{i}\right)-\left[\max _{A^{\prime}} \sum_{j \neq i} v_{j}\left(A_{j}^{\prime}\right)-\sum_{j \neq i} v_{j}\left(A_{j}\right)\right] \\
& =\underbrace{\sum_{j \in N} v_{j}\left(A_{j}\right)-\underbrace{\max _{j \neq i} \sum_{j}}_{A^{\prime}} v_{j}\left(A_{j}^{\prime}\right)}
\end{aligned}
$$

Aligned with social Independent of the welfare bid of i

SINGLE MINDED BIDDERS

- Allocate to maximize social welfare
- Consider the special case of single minded bidders: each bidder i values a subset S_{i} of items at t_{i} and any subset that does not contain S_{i} at 0
- Theorem (folk): optimal winner determination is NP-complete, even with single minded bidders

Winner determination is hard

- Independent set (IS): given a graph, is there a set of vertices of size k such that no two are connected?
- Given an instance of IS:
- The set of items is E
- Player for each vertex
- Desired bundle is adjacent edges, value is 1
- A set of winners W satisfies $S_{i} \cap S_{j}=$ \emptyset for every $i \neq j \in W$ iff the vertices in

\downarrow
1: $\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$
2: $\{\mathrm{a}, \mathrm{b}\}$
3: $\{\mathrm{b}, \mathrm{c}\}$
4: $\{d\}$ W are an IS ■

SP APPROXIMATION

- In fact, optimal winner determination in combinatorial auctions with single-minded bidders is NP-hard to approximate to a factor better than $m^{1 / 2-\epsilon}$
- If we want computational efficiency, can't run VCG
- Need to design a new strategyproof, computationally efficient approx algorithm

The greedy mechanism:

- Initialization:
- Reorder the bids such that $\frac{v_{1}^{*}}{\sqrt{\left|S_{1}^{*}\right|}} \geq \frac{v_{2}^{*}}{\sqrt{\left|S_{2}^{*}\right|}} \geq \cdots \geq \frac{v_{n}^{*}}{\sqrt{\left|S_{n}^{*}\right|}}$
- $W \leftarrow \varnothing$
- For $i=1, \ldots, n$: if $S_{i}^{*} \cap\left(\mathrm{U}_{j \in W} S_{j}^{*}\right)=\emptyset$ then $W \leftarrow W \cup\{i\}$
- Output:
- Allocation: The set of winners is W
- Payments: For each $i \in W, p_{i}=v_{j}^{*} \cdot \sqrt{\left|S_{i}^{*}\right|} / \sqrt{\left|S_{j}^{*}\right|}$, where j is the smallest index such that $S_{i}^{*} \cap S_{j}^{*} \neq \emptyset$, and for all $k<j, k \neq i, S_{k}^{*} \cap S_{i}^{*}=\varnothing$ (if no such j exists then $p_{i}=0$)

SP APPROXIMATION

- Theorem [Lehmann et al. 2001]: The greedy mechanism is strategyproof, poly time, and gives a \sqrt{m}-approximation
- Note that the mechanism satisfies the following two properties:
- Monotonicity: If i wins with $\left(S_{i}^{*}, v_{i}^{*}\right)$, he will win with $v_{i}^{\prime}>v_{i}^{*}$ and $S_{i}^{\prime} \subset S_{i}^{*}$
- Critical payment: A bidder who wins pays the minimum value needed to win

Proof of SP

- We will show that bidder i cannot gain by reporting $\left(S_{i}^{\prime}, v_{i}^{\prime}\right)$ instead of truthful $\left(S_{i}, v_{i}\right)$
- Can assume that ($S_{i}^{\prime}, v_{i}^{\prime}$) is a winning bid and $S_{i} \subseteq S_{i}^{\prime}$
- $\left(S_{i}, v_{i}^{\prime}\right)$ with payment p is at least as good as $\left(S_{i}^{\prime}, v_{i}^{\prime}\right)$ with payment p^{\prime} because $p \leq p^{\prime}$
- $\left(S_{i}, v_{i}\right)$ is at least as good as $\left(S_{i}, v_{i}^{\prime}\right)$ by similar reasoning to Vickrey auction ■

PROOF OF APPROXIMATION

- For $i \in W$, let

$$
\mathrm{OPT}_{i}=\left\{j \in \mathrm{OPT}, j \geq i: S_{i}^{*} \cap S_{j}^{*} \neq \emptyset\right\}
$$

- $\mathrm{OPT} \subseteq \mathrm{U}_{i \in W} \mathrm{OPT}_{i}$, so enough to show

$$
\begin{equation*}
\sum_{j \in \mathrm{OPT}_{i}} v_{j}^{*} \leq \sqrt{m} v_{i}^{*} \tag{1}
\end{equation*}
$$

- For each $j \in \mathrm{OPT}_{i}, v_{j}^{*} \leq \frac{v_{i}^{*} \sqrt{\left|s_{j}^{*}\right|}}{\sqrt{\left|S_{i}^{*}\right|}}$

PROOF OF APPROXIMATION

- Summing over all $j \in \mathrm{OPT}_{i}$,

$$
\begin{equation*}
\sum_{j \in \mathrm{OP}_{i}} v_{j}^{*} \leq \frac{v_{i}^{*}}{\sqrt{\left|S_{i}^{*}\right|}} \sum_{j \in \mathrm{OP}_{i}} \sqrt{\left|S_{j}^{*}\right|} \tag{2}
\end{equation*}
$$

- Using Cauchy-Schwarz $\left(\sum_{i} y_{i} \leq \sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}\right)$,

$$
\sum_{i \in \mathrm{OPT}_{i}} \sqrt{\left|S_{j}^{*}\right|} \leq \sqrt{\left|\mathrm{OPT}_{i}\right|} \sqrt{\sum_{j \in \mathrm{OPT}_{i}}\left|S_{j}^{*}\right|}
$$

PROOF OF APPROXIMATION

- $\sum_{j \in \mathrm{OPT}_{i}}\left|S_{j}^{*}\right| \leq m$
- $\left|\mathrm{OPT}_{i}\right| \leq\left|S_{i}^{*}\right|$
- Plugging into (3),

$$
\sum_{j \in \mathrm{OPT}_{i}} \sqrt{\left|S_{j}^{*}\right|} \leq \sqrt{\left|S_{i}^{*}\right|} \cdot \sqrt{m}
$$

- Plugging into (2), we get (1) ■

