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Mechanism design 

• A subfield of game theory that focuses on 
designing the rules of the game to achieve 
desirable properties 

• We will only cover a small fraction of the 
very basics 
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Why MD? Olympic Badminton! 
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http://youtu.be/hdK4vPz0qaI 
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Second-Price Auction 

• Bidders submit sealed bids 
• One good allocated to highest bidder 
• Winner pays price of second highest bid!! 
• Bidder’s utility = value minus payment 

when winning, zero when losing 
• Amazing observation: Second-price auction 

is strategyproof; bidding true valuation is 
a dominant strategy!! 
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Strategyproofness: bidding high 

• Three cases based on highest 
other bid (blue dot) 

• Higher than bid: lose before 
and after 

• Lower than valuation: win 
before and after, pay same 

• Between bid and valuation: 
lose before, win after but 
overpay 
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lose, as before 

win, overpay! 

win, pay as before 

valuation 

bid 
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Strategyproofness: bidding low 

• Three cases based on highest 
other bid (blue dot) 

• Higher than valuation: lose 
before and after 

• Lower than bid: win before 
and after, pay the same 

• Between valuation and bid: 
win before with profit, lose 
after  ∎ 
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lose, as before 

lose, want to win! 

win, pay as before 

valuation 

bid 
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Vickrey-Clarke-Groves Mechanism 

• 𝑁 = set of bidders, 𝑀 = set of 𝑚 items 
• Each bidder has a combinatorial valuation 

function 𝑣𝑖: 2𝑀 → ℝ+ 
• Choose an allocation 𝑨 = 𝐴1, … ,𝐴𝑛  to 

maximize social welfare: ∑ 𝑣𝑖(𝐴𝑖)𝑖∈𝑁   
• If the outcome is 𝑨, bidder 𝑖 pays 

max
𝑨′

�𝑣𝑗 𝐴𝑗′ −�𝑣𝑗 𝐴𝑗
𝑗≠𝑖𝑗≠𝑖

 

8 



15896 Spring 2015: Lecture 20 

• Suppose we run VCG and there are: 
o 1 item, denoted 𝑎 
o 2 bidders 
o 𝑣1 𝑎 = 7, 𝑣2 𝑎 = 3 
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VCG Mechanism 

What is the payment of  
player 1 in this example?  
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• Theorem: VCG is strategyproof 
• Proof: When the outcome is 𝐴, the utility of 

bidder 𝑖 is  

𝑣𝑖 𝐴𝑖 − max
𝐴′

�𝑣𝑗 𝐴𝑗′ −�𝑣𝑗 𝐴𝑗
𝑗≠𝑖𝑗≠𝑖

 

= �𝑣𝑗 𝐴𝑗 − max
𝐴′

�𝑣𝑗 𝐴𝑗′

𝑗≠𝑖𝑗∈𝑁

 

 Aligned with social 
welfare 

Independent of the 
bid of 𝑖 

VCG Mechanism 
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Single minded bidders 

• Allocate to maximize social welfare 
• Consider the special case of single minded 

bidders: each bidder 𝑖 values a subset 𝑆𝑖 of 
items at 𝑡𝑖 and any subset that does not 
contain 𝑆𝑖 at 0 

• Theorem (folk): optimal winner 
determination is NP-complete, even with 
single minded bidders 

11 



15896 Spring 2015: Lecture 20 

Winner determination is hard 
• INDEPENDENT SET (IS): given a graph, 

is there a set of vertices of size 𝑘 such 
that no two are connected? 

• Given an instance of IS: 
o The set of items is 𝐸 
o Player for each vertex 
o Desired bundle is adjacent edges, value 

is 1 
• A set of winners 𝑊 satisfies 𝑆𝑖 ∩ 𝑆𝑗 =
∅ for every 𝑖 ≠ 𝑗 ∈ 𝑊 iff the vertices in 
𝑊 are an IS ∎ 
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1 2 

4 3 

a 

1: {a,c,d} 
2: {a,b} 
3: {b,c} 
4: {d} 

b c d 
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SP approximation 

• In fact, optimal winner determination in 
combinatorial auctions with single-minded 
bidders is NP-hard to approximate to a 
factor better than 𝑚1/2−𝜖 

• If we want computational efficiency, can’t 
run VCG 

• Need to design a new strategyproof, 
computationally efficient approx algorithm 
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The greedy mechanism: 
• Initialization:  

o Reorder the bids such that 𝑣1∗

𝑆1∗
≥ 𝑣2∗

𝑆2∗
≥ ⋯ ≥ 𝑣𝑛∗

𝑆𝑛∗
 

o 𝑊 ← ∅ 
• For 𝑖 = 1, … ,𝑛: if 𝑆𝑖∗ ∩ (⋃ 𝑆𝑗∗) = ∅𝑗∈𝑊  then 𝑊 ← 𝑊 ∪ {𝑖} 
• Output: 

o Allocation: The set of winners is 𝑊 

o Payments: For each 𝑖 ∈ 𝑊, 𝑝𝑖 = 𝑣𝑗∗ ⋅ 𝑆𝑖∗ / 𝑆𝑗∗ , where  

𝑗 is the smallest index such that 𝑆𝑖∗ ∩ 𝑆𝑗∗ ≠ ∅, and for all 
𝑘 < 𝑗,𝑘 ≠ 𝑖, 𝑆𝑘∗ ∩ 𝑆𝑖∗ = ∅ (if no such 𝑗 exists then 𝑝𝑖 = 0) 

 
14 



15896 Spring 2015: Lecture 20 

SP approximation 
• Theorem [Lehmann et al. 2001]: The 

greedy mechanism is strategyproof, poly 
time, and gives a 𝑚-approximation 

• Note that the mechanism satisfies the 
following two properties: 
o Monotonicity: If 𝑖 wins with (𝑆𝑖∗, 𝑣𝑖∗), he will 

win with 𝑣𝑖′ > 𝑣𝑖∗ and 𝑆𝑖′ ⊂ 𝑆𝑖∗ 
o Critical payment: A bidder who wins pays 

the minimum value needed to win 
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Proof of SP 

• We will show that bidder 𝑖 cannot gain by 
reporting (𝑆𝑖′, 𝑣𝑖′) instead of truthful 𝑆𝑖 , 𝑣𝑖  

• Can assume that (𝑆𝑖′, 𝑣𝑖′) is a winning bid 
and 𝑆𝑖 ⊆ 𝑆𝑖′ 

• (𝑆𝑖 , 𝑣𝑖′) with payment 𝑝 is at least as good 
as (𝑆𝑖′, 𝑣𝑖′) with payment 𝑝𝑝 because 𝑝 ≤ 𝑝𝑝 

• 𝑆𝑖 , 𝑣𝑖  is at least as good as (𝑆𝑖 , 𝑣𝑖′) by 
similar reasoning to Vickrey auction ∎ 
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Proof of approximation 
• For 𝑖 ∈ 𝑊, let  

OPT𝑖 = {𝑗 ∈ OPT, 𝑗 ≥ 𝑖: 𝑆𝑖∗ ∩ 𝑆𝑗∗ ≠ ∅} 
• OPT ⊆ ⋃ OPT𝑖𝑖∈𝑊 , so enough to show  

� 𝑣𝑗∗ ≤ 𝑚
𝑗∈OPT𝑖

𝑣𝑖∗ 

• For each 𝑗 ∈ OPT𝑖, 𝑣𝑗∗ ≤
𝑣𝑖
∗ 𝑆𝑗

∗

𝑆𝑖
∗
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Proof of approximation 

• Summing over all 𝑗 ∈ OPT𝑖, 

� 𝑣𝑗∗ ≤
𝑣𝑖∗

𝑆𝑖∗
� 𝑆𝑗∗

𝑗∈OPT𝑖

 
𝑗∈OPT𝑖

 

• Using Cauchy-Schwarz ∑𝑥𝑖𝑦𝑖 ≤ ∑ 𝑥𝑖2𝑖 ∑ 𝑦𝑖2𝑖 , 

� 𝑆𝑗∗

𝑗∈OPT𝑖

≤ OPT𝑖 � 𝑆𝑗∗

𝑗∈OPT𝑖
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Proof of approximation 

• ∑ 𝑆𝑗∗𝑗∈OPT𝑖
≤ 𝑚 

• OPT𝑖 ≤ 𝑆𝑖∗  
• Plugging into 3 , 

� 𝑆𝑗∗

𝑗∈OPT𝑖

≤ 𝑆𝑖∗ ⋅ 𝑚 

• Plugging into 2 , we get 1   ∎    
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