CMU 15-896 Noncooperative games 4: Stackelberg games

TEACHER: ARIEL PROCACCIA

A CURIOUS GAME

- Playing up is a dominant strategy for row player
- So column player would play left
- Therefore, (1,1) is the only Nash equilibrium outcome

15896 Spring 2015: Lecture 20

COMMITMENT IS GOOD

- Suppose the game is played as follows:
 - Row player commits to playing a row
 - Column player observes the commitment and chooses column

• Row player can commit to playing down!

COMMITMENT TO MIXED STRATEGY

- By committing to a mixed strategy, row player can guarantee a reward of 2.5
- Called a Stackelberg (mixed) strategy

15896 Spring 2015: Lecture 20

COMPUTING STACKELBERG

- Theorem [Conitzer and Sandholm 2006]: In 2-player normal form games, an optimal Stackelberg strategy can be found in poly time
- Theorem [ditto]: the problem is NP-hard when the number of players is ≥ 3

TRACTABILITY: 2 PLAYERS

- For each pure follower strategy s_2 , we compute via the LP below a strategy x_1 for the leader such that
 - Playing s_2 is a best response for the follower
 - Under this constraint, x_1 is optimal
- Choose x_1^* that maximizes leader value

 $\max \sum_{s_1 \in S} x_1(s_1) u_1(s_1, s_2)$

s.t. $\forall s_2' \in S, \ \sum_{s_1 \in S} x_1(s_1)u_2(s_1, s_2) \ge \sum_{s_1 \in S} x_1(s_1)u_2(s_1, s_2')$ $\sum_{s_1 \in S} x_1(s_1) = 1$ $\forall s_1 \in S, x_1(s_1) \in [0, 1]$

APPLICATION: SECURITY

- Airport security: deployed at LAX
- Federal Air Marshals
- Coast Guard
- Idea:
 - Defender commits to mixed strategy
 - Attacker observes and best responds

15896 Spring 2015: Lecture 20

SECURITY GAMES

- Set of targets $T = \{1, \dots, n\}$
- Set of m security resources Ω available to the defender re (leader)
- Set of schedules $\Sigma \subseteq 2^T$
- Resource ω can be assigned to one of the schedules in $A(\omega) \subseteq \Sigma$
- Attacker chooses one target to attack

SECURITY GAMES

- For each target t, there are four numbers: $u_d^c(t) \ge u_d^u(t)$, and $u_a^c(t) \le u_a^u(t)$ resources
- Let $\boldsymbol{c} = (c_1, \dots, c_n)$ be the vector of coverage probabilities
- The utilities to the defender/attacker under **c** if target *t* is attacked are $u_d(t, c) = u_d^c(t) \cdot c_t + u_d^u(t)(1 - c_t)$
- $u_a(t, c) = u_a^c(t) \cdot c_t + u_a^u(t)(1 c_t)$

15896 Spring 2015: Lecture 20

targets

This is a 2-player Stackelberg game. Can we compute an optimal strategy for the defender in polynomial time?

15896 Spring 2015: Lecture 20

SOLVING SECURITY GAMES

- Consider the case of $\Sigma = T$, i.e., resources are assigned to individual targets, i.e., schedules have size 1
- Nevertheless, number of leader strategies is exponential
- Theorem [Korzhyk et al. 2010]: Optimal leader strategy can be computed in poly time

A COMPACT LP

- LP formulation similar to previous one
- Advantage: logarithmic in #leader strategies
- Problem: do probabilities correspond to strategy?

 $\begin{aligned} \max \ u_d(t^*,c) \\ \text{s.t.} \quad \forall \omega \in \Omega, \forall t \in A(\omega), 0 \le c_{\omega,t} \le 1 \\ \forall t \in T, c_t &= \sum_{\omega \in \Omega: t \in A(\omega)} c_{\omega,t} \le 1 \\ \forall \omega \in \Omega, \sum_{t \in A(\omega)} c_{\omega,t} \le 1 \\ \forall t \in T, u_a(t,c) \le u_a(t^*,c) \end{aligned}$

15896 Spring 2015: Lecture 20

FIXING THE PROBABILITIES

- Theorem [Birkhoff-von Neumann]: Consider an $m \times n$ matrix M with real numbers $a_{ij} \in [0,1]$, such that for each $i, \sum_j a_{ij} \leq 1$, and for each $j, \sum_i a_{ij} \leq 1$ (M is kinda doubly stochastic). Then there exist matrices M^1, \dots, M^q and weights w^1, \dots, w^q such that:
 - 1. $\sum_k w^k = 1$
 - 2. $\sum_k w^k M^k = M$
 - 3. For each k, M^k is kinda doubly stochastic and its elements are in $\{0,1\}$
- The probabilities $c_{\omega,t}$ satisfy theorem's conditions
- By 3, each M^k is a deterministic strategy
- By 1, we get a mixed strategy
- By 2, gives right probs

15896 Spring 2015: Lecture 20

	t_1	t_2	t_3
ω_1	0.7	0.2	0.1
ω2	0	0.3	0.7

15896 Spring 2015: Lecture 20

GENERALIZING?

- What about schedules of size 2?
- Air Marshals domain has such schedules: outgoing+incoming flight (bipartite graph)
- Previous apporoach fails
- Theorem [Korzhyk et al. 2010]: problem is NP-hard

15896 Spring 2015: Lecture 20

Newsweek National News

Subscribe Now | Make Newsweek Your Homepage | Newsletters | RSS

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr Newsweek Updated: 1:00 p.m. PT Sept 28, 2007

Sept. 28, 2007 - Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely unpredictable. Now all airport security officials have to do is press a button labeled

Security forces work the sidewalk a

"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

15896 Spring 2015: Lecture 20

CRITICISMS

- Problematic assumptions:
 - 1. The attacker exactly observes the defender's mixed strategy
 - 2. The defender knows the attacker's utility function
 - 3. The attacker behaves in a perfectly rational way
- We will focus on relaxing assumption #1

LIMITED SURVEILLANCE

- Let us compare two worlds:
 - 1. Status quo: The defender optimizes against an attacker with unlimited observations (i.e., complete knowledge of the defender's strategy), but the attacker actually has only k observations
 - 2. Ideal: The defender optimizes against an attacker with k observations, and, miraculously, the attacker indeed has exactly k observations

LIMITED SURVEILLANCE

- Theorem [Blum et al. 2014]: Assume that utilities are normalized to be in [-1,1]. For any m, d, k such that $2md \ge \binom{2k}{k}$, and any $\epsilon > 0$, there is a zero-sum security game such that the difference between worlds 2 and 1 is $1/2 - \epsilon$
- Lemma: If $|A| = \binom{2k}{k}$, there exists $\mathcal{D} = \{D_1, \dots, D_{2k}\} \subseteq 2^A$ such that:
 - 1. $\forall i, |D_i| = |A|/2$
 - 2. Each $a \in A$ is in exactly k members of \mathcal{D}
 - 3. If $\mathcal{D}' \subset \mathcal{D}$ and $|\mathcal{D}'| \leq k$ then $\bigcup \mathcal{D}' \neq A$

15896 Spring 2015: Lecture 20

k = 2

PROOF OF THEOREM

- *m* resources, each can defend any *d* targets, $n = \left[\frac{md}{\epsilon}\right]$ targets
- For any target i, zero-sum utilities with $U_d^c(i) = 1$ and $U_d^u(i) = 0$
- Optimal strategy assuming unlimited surveillance: defend every target with probability $\frac{md}{n} \leq \epsilon$

15896 Spring 2015: Lecture 20

PROOF OF THEOREM

- Next we define a much better strategy against an attacker with k observations
- $A = \text{subset of targets } \{1, \dots, \binom{2k}{k}\} \subseteq T$
- Define $\{D_1, \dots D_{2k}\}$ as in the lemma
- Pure strategy S_i covers D_i ; this is valid because $|D_i| = |A|/2 \le md$ (by property 1)
- Let S^* be the uniform distribution over S_1, \ldots, S_{2k}
- By property 2, S^* covers each target in A with probability $\frac{1}{2}$
- By property 3, k observations from S^* would show some target in A never being covered; that target is attacked

LIMITED SURVEILLANCE

 Theorem [Blum et al. 2014]: For any zerosum security game with n targets, m resources, and a set of schedules with max coverage d, and for any k observations, the difference between the two worlds is at most

$$O\left(\sqrt{\frac{\ln(mdk)}{k}}\right)$$

15896 Spring 2015: Lecture 20