CMU 15-896 SOCIAL CHOICE 2: MANIPULATION

TEACHER:
ARIEL PROCACCIA

REMINDER: VOTING

- Set of voters $N=\{1, \ldots, n\}$
- Set of alternatives $A,|A|=m$
- Each voter has a ranking over the alternatives
- $x>_{i} y$ means that voter i prefers x to y
- Preference profile $\vec{\succ}=$ collection of all voters' rankings
- Voting rule $f=$ function from preference profiles to alternatives
- Important: so far voters were honest!

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
b	b	a
a	a	b
c	c	c
d	d	d

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

BORDA RESPONDS TO CRITICS

My scheme is intended only for honest men!

STRATEGYPROOFNESS

- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences:

$$
\forall \overrightarrow{<,} \forall i \in N, \forall<_{i}^{\prime}, f(\vec{\zeta}) \succcurlyeq_{i} f\left(<_{i}^{\prime}, \vec{\zeta}_{-i}\right)
$$

Maximum value of m for which plurality is SP?

StRATEGYPROOFNESS

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is constant if
 the same alternative is always chosen
- Constant functions and dictatorships are SP

Constant function

GIbBARD-SATTERTHWAITE

- A voting rule is onto if any alternative can win
- Theorem (Gibbard-Satterthwaite): If $m \geq 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

Gibbard

Satterthwaite

PROOF SKETCH OF G-S

- Lemmas (prove in HW1):
- Strong monotonicity: f is SP rule, \gtrless profile, $f(\vec{\zeta})=a$. Then $f\left(\vec{\zeta}^{\prime}\right)=a$ for all profiles $\vec{\zeta}^{\prime}$ s.t. $\forall x \in A, i \in N:\left[a>_{i} x \Rightarrow a>_{i}^{\prime} x\right]$
- Pareto optimality: f is $\mathrm{SP}+$ onto rule,,$~ \gtrless$ profile. If $a \succ_{i} b$ for all $i \in N$ then $f(<) \neq b$
- Let us assume that $m \geq n$, and neutrality:

$$
f(\pi(\vec{\prec}))=\pi(f(\vec{\zeta})) \text { for all } \pi: A \rightarrow A
$$

PROOF SKETCH OF G-S

- Say $n=4$ and $A=\{a, b, c, d, e\}$
- Consider the following profile

1	2	3	4
\mathbf{a}	b	c	d
	b	c	d
	a		
c	d	a	b
d	a	b	c
e	e	e	e

- Pareto optimality $\Rightarrow e$ is not the winner
- Suppose $f(\vec{\zeta})=a$

15896 Spring 2015: Lecture 2

PROOF SKETCH OF G-S

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
a	b	c	d
b	c	d	a
c	d	a	b
d	a	b	c
e	e	e	e

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
a	d	d	d
d	a	a	a
b	b	b	b
c	c	c	c
e	e	e	e

- Strong monotonicity $\Rightarrow f\left(\prec^{1}\right)=a$

1	2	3	4	1	2	3	4
a	d	d	d	a	d	d	d
d	a	a	a	d	b	a	a
b	b	b	b	b	c	b	b
c	c	c	c	c	e	c	c
e	e	e	e	e	a	e	e

Poll 1: How many options are there for $f\left(\zeta^{2}\right)$?

1. 1
2. 2
3. 3
4. 4

15896 Spring 2015: Lecture 2

1	2	3	4
a	d	d	d
b	b	a	a
c	c	b	b
d	e	c	c
e	a	e	e

\pm	2	3	4
a	d	d	d
b	b	b	a
C	C	C	D
d	e	e	C
e	a	a	e

\ldots	2	3	4
α	d	d	d
D	D	b	D
C	C	C	C
d	e	e	e
e	2	a	a

$>^{2}$

- Pareto optimality $\Rightarrow f\left(\left\langle^{j}\right) \notin\{b, c, e\}\right.$
- $\left[\mathrm{SP} \Rightarrow f\left(<^{j}\right) \neq d\right] \Rightarrow f\left(<^{j}\right)=a$
- Strong monotonicity $\Rightarrow f(\gtrless)=a$ for every \longleftrightarrow where 1 ranks a first
- Neutrality $\Rightarrow 1$ is a dictator

15896 Spring 2015: Lecture 2

CIRCUMVENTING G-S

- Restricted preferences (this lecture)
- Money \Rightarrow mechanism design (not here)
- Computational complexity (this lecture)

15896 Spring 2015: Lecture 2
Carnegie Mellon University 13

SINGLE PEAKED PREFERENCES

- We want to choose a location for a public good (e.g., library) on a street
- Alternatives = possible locations
- Each voter has an ideal location (peak)
- The closer the library is to a voter's peak, the happier he is

SINGLE PEAKED PREFERENCES

- Leftmost point mechanism: return the leftmost point
- Midpoint mechanism: return the average of leftmost and rightmost points

Which of the two mechanisms is SP?

THE MEDIAN

- Select the median peak
- The median is a Condorcet winner!
- The median is onto
- The median is nondictatorial

THE MEDIAN IS SP

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al., SC\&W 1989]

THE COMPUTATIONAL PROBLEM

- f-Manipulation problem:
- Given votes of nonmanipulators and a preferred candidate p
- Can manipulator cast vote that makes p (uniquely) win under f ?
- Example: Borda, $p=a$

1	2	3
b	b	
a	a	
c	c	
d	d	

1	$\mathbf{2}$	$\mathbf{3}$
b	b	a
a	a	c
c	c	d
d	d	b

A greedy algorithm

- Rank p in first place
- While there are unranked alternatives:
- If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
- Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	C
C	c		c	c		c	C	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a	C	a	a	C	a	a	C
C	C	b	C	C	d	C	C	d
d	d		d	d		d	d	b

15896 Spring 2015: Lecture 2

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	2	-	3	1
\mathbf{d}	0	0	1	-	2
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	0	1	-	2
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	3	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	b

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	3	3	2	-

Pairwise elections

When does The ALG WORK?

- Theorem [Bartholdi et al., SCW 89]: Fix $i \in N$ and the votes of other voters. Let f be a rule s.t. ヨfunction $s\left(<_{i}, x\right)$ such that:

1. For every $<_{i}$ chooses a candidate that uniquely maximizes $s\left(\prec_{i}, x\right)$
2. $\left\{y: y \prec_{i} x\right\} \subseteq\left\{y: y \prec_{i}^{\prime} x\right\} \Rightarrow s\left(\prec_{i}, x\right) \leq s\left(\prec_{i}^{\prime}, x\right)$

Then the algorithm always decides f-MANIPULATION correctly

What is s for plurality?

PROOF OF THEOREM

- Suppose the algorithm failed, producing a partial ranking $<_{i}$
- Assume for contradiction $<_{i}^{\prime}$ makes p win
- $U \leftarrow$ alternatives not ranked in $<_{i}$
- $u \leftarrow$ highest ranked alternative in U according to $<_{i}^{\prime}$
- Complete $<_{i}$ by adding u first, then others arbitrarily

PROOF OF THEOREM

- Property $2 \Rightarrow s\left(<_{i}, p\right) \geq s\left(\prec_{i}^{\prime}, p\right)$
- Property 1 and \prec^{\prime} makes p the winner $\Rightarrow s\left(<_{i}^{\prime}, p\right)>s\left(<_{i}^{\prime}, u\right)$
- Property $2 \Rightarrow s\left(<_{i}^{\prime}, u\right) \geq s\left(<_{i}, u\right)$
- Conclusion: $s\left(<_{i}, p\right)>s\left(<_{i}, u\right)$, so the alg could have inserted u next ■

VOTING RULES THAT ARE HARD TO MANIPULATE

- Natural rules
- Copeland with second order tie breaking [Bartholdi et al., SCW 89]
- STV [Bartholdi\&Orlin, SCW 91]
- Ranked Pairs [Xia et al., IJCAI 09]

Order pairwise elections by decreasing strength of victory Successively lock in results of pairwise elections unless it leads to cycle
Winner is the top ranked candidate in final order

- Can also "tweak" easy to manipulate voting rules [Conitzer\&Sandholm, IJCAI 03]

EXAMPLE: RANKED PAIRS

