

TEACHER: ARIEL PROCACCIA

REMINDER: VOTING

- Set of voters $N = \{1, \dots, n\}$
- Set of alternatives A, |A| = m
- Each voter has a ranking over the alternatives
- $x \succ_i y$ means that voter *i* prefers *x* to *y*
- Preference profile $\overrightarrow{\succ}$ = collection of all voters' rankings
- Voting rule *f* = function from preference profiles to alternatives
- Important: so far voters were honest!

15896 Spring 2015: Lecture 2

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!

1	2	3
b	b	a
a	a	b
С	с	с
d	d	d

1	2	3
b	b	a
a	a	с
с	с	d
d	d	b

15896 Spring 2015: Lecture 2

BORDA RESPONDS TO CRITICS

My scheme is intended only for honest men!

Random 18th Century French Dude

15896 Spring 2015: Lecture 2

STRATEGYPROOFNESS

• A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences: $\forall \vec{\prec}, \forall i \in N, \forall \prec'_i, f(\vec{\prec}) \geq_i f(\prec'_i, \vec{\prec}_{-i})$

15896 Spring 2015: Lecture 2

STRATEGYPROOFNESS

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is **constant** if the same alternative is always chosen
- Constant functions and dictatorships are SP

Dictatorship

Constant function

15896 Spring 2015: Lecture 2

GIBBARD-SATTERTHWAITE

- A voting rule is **onto** if any alternative can win
- Theorem (Gibbard-Satterthwaite): If $m \ge 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

Gibbard

Satterthwaite

PROOF SKETCH OF G-S

- Lemmas (prove in HW1):
 - Strong monotonicity: f is SP rule, $\vec{\prec}$ profile, $f(\vec{\prec}) = a$. Then $f(\vec{\prec}') = a$ for all profiles $\vec{\prec}'$ s.t. $\forall x \in A, i \in N$: $[a \succ_i x \Rightarrow a \succ'_i x]$
 - Pareto optimality: f is SP+onto rule, $\vec{\prec}$ profile. If $a \succ_i b$ for all $i \in N$ then $f(\vec{\prec}) \neq b$
- Let us assume that $m \ge n$, and neutrality: $f(\pi(\vec{\prec})) = \pi(f(\vec{\prec}))$ for all $\pi: A \to A$

15896 Spring 2015: Lecture 2

PROOF SKETCH OF G-S

- Say n = 4 and $A = \{a, b, c, d, e\}$
- Consider the following profile

- Pareto optimality $\Rightarrow e$ is not the winner
- Suppose $f(\vec{\prec}) = a$

15896 Spring 2015: Lecture 2

PROOF SKETCH OF G-S

1	2	3	4			
a	b	с	d			
b	с	d	a			
с	d	a	b			
d	a	b	с			
е	е	е	е			
\rightarrow						

1	2	3	4
a	d	d	d
d	a	a	a
b	b	b	b
с	с	с	С
е	е	е	е

 $\overrightarrow{1}$

• Strong monotonicity $\Rightarrow f(\vec{\prec}^1) = a$

15896 Spring 2015: Lecture 2

15896 Spring 2015: Lecture 2

1	2	3	4	1	2	3	4	1	2	3	4
a	d	d	d	a	d	d	d	a	d	d	d
b	b	a	a	b	b	b	a	b	b	b	b
с	С	b	b	с	с	с	b	с	С	С	с
d	е	с	с	d	е	е	с	d	е	е	е
e	a	е	е	e	a	a	е	е	a	a	a
	$\overline{\checkmark}$	2			$\overline{\langle}$	3			$\overline{\langle}$	7 4	

- Pareto optimality $\Rightarrow f(\overrightarrow{\prec}^j) \notin \{b, c, e\}$
- $[\operatorname{SP} \Rightarrow f\left(\overrightarrow{\prec}^{j}\right) \neq d] \Rightarrow f\left(\overrightarrow{\prec}^{j}\right) = a$
- Strong monotonicity $\Rightarrow f(\vec{\prec}) = a$ for every $\vec{\prec}$ where 1 ranks *a* first
- Neutrality $\Rightarrow 1$ is a dictator

15896 Spring 2015: Lecture 2

CIRCUMVENTING G-S

- Restricted preferences (this lecture)
- Money \Rightarrow mechanism design (not here)
- Computational complexity (this lecture)

SINGLE PEAKED PREFERENCES

- We want to choose a location for a public good (e.g., library) on a street
- Alternatives = possible locations
- Each voter has an ideal location (peak)
- The closer the library is to a voter's peak, the happier he is

SINGLE PEAKED PREFERENCES

- Leftmost point mechanism: return the leftmost point
- Midpoint mechanism: return the average of leftmost and rightmost points

THE MEDIAN

- Select the median peak
- The median is a Condorcet winner!
- The median is onto
- The median is nondictatorial

THE MEDIAN IS SP

15896 Spring 2015: Lecture 2

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al., SC&W 1989]

15896 Spring 2015: Lecture 2

THE COMPUTATIONAL PROBLEM

- *f*-MANIPULATION problem:
- Example: Borda, p = a

1	2	3
b	b	
a	a	
с	с	
d	d	

1	2	3
b	b	a
a	a	с
с	с	d
d	d	b

15896 Spring 2015: Lecture 2

A GREEDY ALGORITHM

- Rank p in first place
- While there are unranked alternatives:
 - If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
 - Otherwise return false

15896 Spring 2015: Lecture 2

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	с
С	С		с	С		с	С	
d	d		d	d		d	d	

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a	с	a	a	с	a	a	с
С	С	b	с	С	d	с	С	d
d	d		d	d		d	d	b

15896 Spring 2015: Lecture 2

1	2	3	4	5
a	b	е	е	a
b	a	С	С	
С	d	b	b	
d	е	a	a	
е	С	d	d	

Preference profile

	a	b	С	d	е
a	_	2	3	5	3
b	3	-	2	4	2
С	2	2	-	3	1
d	0	0	1	-	2
е	2	2	3	2	_

Pairwise elections

15896 Spring 2015: Lecture 2

1	2	3	4	5
a	b	е	е	a
b	a	С	С	С
С	d	b	b	
d	е	a	a	
е	С	d	d	

Preference profile

	a	b	С	d	е
a	_	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	0	1	-	2
e	2	2	3	2	-

Pairwise elections

15896 Spring 2015: Lecture 2

1	2	3	4	5
a	b	е	е	a
b	a	С	С	С
С	d	b	b	d
d	е	a	a	
е	С	d	d	

Preference profile

	a	b	С	d	е
a	_	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	2	3	2	_

Pairwise elections

15896 Spring 2015: Lecture 2

1	2	3	4	5
a	b	е	е	a
b	a	с	С	С
С	d	b	b	d
d	е	a	a	е
е	С	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	_

Pairwise elections

15896 Spring 2015: Lecture 2

1	2	3	4	5
a	b	е	е	a
b	a	с	С	С
С	d	b	b	d
d	е	a	a	е
е	С	d	d	b

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	_

Pairwise elections

15896 Spring 2015: Lecture 2

WHEN DOES THE ALG WORK?

- Theorem [Bartholdi et al., SCW 89]: Fix $i \in N$ and the votes of other voters. Let f be a rule s.t. \exists function $s(\prec_i, x)$ such that:
 - 1. For every \prec_i chooses a candidate that uniquely maximizes $s(\prec_i, x)$
 - 2. $\{y: y \prec_i x\} \subseteq \{y: y \prec'_i x\} \Rightarrow S(\prec_i, x) \leq s(\prec'_i, x)$

Then the algorithm always decides f-MANIPULATION correctly

What is *s* for plurality?

15896 Spring 2015: Lecture 2

PROOF OF THEOREM

- Suppose the algorithm failed, producing a partial ranking \prec_i
- Assume for contradiction \prec'_i makes p win
- $U \leftarrow$ alternatives not ranked in \prec_i
- $u \leftarrow$ highest ranked alternative in U according to \prec'_i
- Complete \prec_i by adding u first, then others arbitrarily

15896 Spring 2015: Lecture 2

PROOF OF THEOREM

- Property $2 \Rightarrow s(\prec_i, p) \ge s(\prec'_i, p)$
- Property 1 and \prec' makes p the winner $\Rightarrow s(\prec'_i, p) > s(\prec'_i, u)$
- Property $2 \Rightarrow s(\prec'_i, u) \ge s(\prec_i, u)$
- Conclusion: $s(\prec_i, p) > s(\prec_i, u)$, so the alg could have inserted u next

15896 Spring 2015: Lecture 2

VOTING RULES THAT ARE HARD TO MANIPULATE

- Natural rules
 - Copeland with second order tie breaking [Bartholdi et al., SCW 89]
 - STV [Bartholdi&Orlin, SCW 91]
 - Ranked Pairs [Xia et al., IJCAI 09]
 Order pairwise elections by decreasing strength of victory
 Successively lock in results of pairwise elections unless it leads to cycle
 Winner is the top ranked candidate in final order
- Can also "tweak" easy to manipulate voting rules [Conitzer&Sandholm, IJCAI 03]

15896 Spring 2015: Lecture 2

15896 Spring 2015: Lecture 2