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BACK TO PRISON

e The only Nash
equilibrium in Prisoner’s
dilemma is bad; but how
bad is it? Cooperate [N

Cooperate Defect

e Objective function: social

cost = sum of costs
. . ] Defect
e NE i1s six times worse

than the optimum
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ANARCHY AND STABILITY

 Fix a class of games, an objective function, and
an equilibrium concept

e The price of anarchy (stability) is the worst-case
ratio between the worst (best) objective function
value of an equilibrium of the game, and that of
the optimal solution

e In this lecture:
o Objective function = social cost

o Equilibrium concept = Nash equilibrium
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EXAMPLE: COST SHARING

e n players in weighted directed
graph G

 Player i wants to get from s; to t;;
strategy space is s; — t; paths

 Lach edge e has cost c,

* Cost of edge is split between all
players using edge

* Cost of player is sum of costs over
edges on path
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EXAMPLE: COST SHARING

 With n players, the example
on the right has an NE with
social cost n

 Optimal social cost is 1

e = Price of anarchy > n

éProve that the price of Y \@ /

‘anarchy is at most n
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EXAMPLE: COST SHARING

 Think of the 1 edges as cars,
and the k edge as mass transit

e Bad Nash equilibrium with
cost n

cost k

e Now let’s modify the
example...
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EXAMPLE: COST SHARING

e OPT=k+1

e Only equilibrium has cost
k-H(n)

e = price of stability is at
least Q(logn)

e We will show that the price
of stability is ©@(logn)
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POTENTIAL GAMES

A game is an exact potential game if there
exists a function ®:[[}L,S; = R such that
for all i € N, for all s € [[}L,S;, and for all
Si, € Si7
cost;(s;,s_;) — cost;(s) = ®(s;,s_;) — D(s)

___________________________________________________________________________________________________________________________

EWhy does the existence of an exact
‘potential function imply the existence
of a pure Nash equilibrium?
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POTENTIAL GAMES

e Theorem: the cost sharing game is an exact
potential game

e Proof:
o Let n,(s) be the number of players using e under s

o Define the potential function
ne(s)

-3 3

o If player Changes paths, pays

for each new
Ne (S)

for each old edge, so Acost; = A® =

edge, gets

Ne (S)
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POTENTIAL GAMES

e Theorem: The cost of stability of cost sharing
games is 0O(logn)
e Proof:

o It holds that
cost(s) < ®(s) < H(n) - cost(s)

o Take a strategy profile s that minimizes &

o Sisan NE
o cost(s) < d(s) < d(OPT) < H(n) : cost(OPT) =
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COST SHARING SUMMARY

e In every cost sharing game

o VNE s, cost(s) < n - cost(OPT)

o 3ANE s such that cost(s) < H(n) - cost(OPT)
e There exist cost sharing games s.t.

o 3INE s such that cost(s) = n - cost(OPT)
o VNE s, cost(s) = H(n) - cost(OPT)
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CONGESTION GAMES

* (eneralization of cost sharing games
e n players and m resources

* Each player i chooses a set of resources (e.g., a
path) from collection S; of allowable sets of
resources (e.g., paths from s; to t;)

* Cost of resource j is a function f;(n;) of the
number n; of players using it

 Cost of player is the sum over used resources
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CONGESTION GAMES

e Theorem |[Rosenthal 1973|: Every
congestion game is an exact potential
game

 Proot: The exact potential function is
n;(s)

P(s) = 2 2 £

e Theorem [Monderer and Shapley 1996]|:
Every potential game is isomorphic to a

congestion game
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NETWORK FORMATION GAMES

 Fach player is a vertex v

o Strategy of v: set of undirected edges to build
that touch v

 Strategy profile s induces undirected graph G(s)
e Cost of building any edge is «

e cost,(s) = any,(s) + ), d(u,v), where n, =
#edges bought by v, d is shortest path in #edges

* cost(s) = Luzvd(W,v) + alE]|
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EXAMPLE: NETWORK FORMATION

e NE with a = 3

Q

Suboptimal Optimal
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EXAMPLE: NETWORK FORMATION

e Lemma: If &« = 2 then any star is optimal, and if
a < 2 then a complete graph is optimal

 Proof:
o Suppose a < 2, and consider any graph that is not
complete

o Adding an edge will decrease the sum of distances by
at least 2, and costs only «

o Suppose a = 2 and the graph contains a star, so the
diameter is at most 2; deleting a non-star edge
increases the sum of distances by at most 2, and saves
a m

) w 15896 Spring 2015: Lecture 19 Carnegie Mellon University 16




EXAMPLE: NETWORK FORMATION

___________________________________________________________________________________________________________________________

éPoll: For which values of a is any star an
NE, and any complete graph an NE

1 a=>1l,a<l1
2 a=2,a<l
3 a = 1, none

4 a = 2, none
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EXAMPLE: NETWORK FORMATION

e Theorem:
. Ifa=2ora<1 PoS=1
2. Forl<a<?2, PoS<4/3

e Proof:

o Part 1 is immediate from the lemma and poll

o Forl<a< 2, the star is an NE, while OPT is a
complete graph

o Worst case ratio when a — 1:
2nn—1)—-(n—-1) 4n2—6n+2<4
= - =u
nn—1)+nn—-1)/2 3n? —3n 3
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EXAMPLE: NETWORK CREATION

* Theorem |Fabrikant et al. 2003|: The price
of anarcy of network creation games is
0(Va)

e Lemma: If s is a Nash equilibrium that

induces a graph of diameter d, then
cost(s) < 0(d) - OPT
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PROOF OF LEMMA

e OPT = Q(an + n?)
o Buying a connected graph costs at least
(n—1a
o There are Q(n?) distances
 Distance costs < dn? = focus on edge
costs

e There are at most n — 1 cut edges = focus
on noncut edges
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PROOF OF LEMMA

e (Claim: Let e = (u,v) be a noncut edge, then the distance
d(u,v) with e deleted < 2d

o V, =set of nodes s.t. the shortest path from u uses e

o Figure shows shortest path avoiding e, e’ = (u',v') is
the edge on the path entering V,

o P, is the shortest path from u tou' = |P,| < d

o |P,|] <d-—1asP,U e is shortest path from u to v’ =
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PROOF OF LEMMA

e Claim: There are O(nd/a) noncut edges
paid for by any vertex v
o Let e = (u,v) be an edge paid for by v

o By previous claim, deleting e increases
distances from v by at most 2d|V,]

o G is an equilibrium = a < 2d|V,| = |V,| = a/2d

o n vertices overall = can’t be more than 2nd/a
sets V, ®
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PROOF OF LEMMA

e O(nd/a) noncut edges per vertex
 O(nd) total payment for these per vertex
e 0(n®d) overall =
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PROOF OF THEOREM

By lemma, it is enough to show that the
diameter at a NE < 2+/a

e Suppose d(u,v) = 2k for some k

By adding the edge (u,v), u pays a and
improves distance to second half of the
u — v shortest path by

Rk—1D)+QRk—-3)+--+1=k?

o If d(u,v) > 2+/a, it is beneficial to add edgem
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