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REMINDER: THE MINIMAX THEOREM

e Theorem [von Neumann, 1928]:
Every 2-player zero-sum game
has a unique value v such that:

o Player 1 can guarantee value at
least v

o Player 2 can guarantee loss at
most v

e We will prove the theorem via
no-regret learning
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HOW TO REACH YOUR SPACESHIP

e Fach morning pick one of n
possible routes

e Then find out how long each
route took

e Is there a strategy for
picking routes that does
almost as well as the best 58 e
fixed route in hindsight? 47 minutes
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THE MODEL

e View as a matrix (maybe infinite
#CO]UHHIS) Adversary

Algorithm

e Algorithm picks row, adversary column

* Alg pays cost of (row,column) and gets
column as feedback

e Assume costs are in [0,1]
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THE MODEL

 Define average regret in T time steps as
(average per-day cost of alg) — (average
per-day cost of best fixed row in hindsight)

 No-regret algorithm: regret— 0 as T — o

 Not competing with adaptive strategy, just
the best fixed column
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EXAMPLE

e Algorithm 1: Alternate between
U and D

e Poll 1: What is algorithm 1’s
 worst-case average regret”’

1. 6(1/ T) Adversary
2 0(1) El 1] 0
3 O(T) E

= 0| 1
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EXAMPLE

e Algorithm 2: Choose action that
has lower cost so far

e Poll 2: What is algorithm 2’s
 worst-case average regret”’

. 0(1/T) Adversary

2. 0(1/VT) ey

3. O(1/logT) =
B O N == <[ 0] !
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————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

What can we say more
generally about
deterministic algorithms?
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USING EXPERT ADVICE

e Want to predict the stock market

e Solicit advice from n experts

o Expert = someone with an opinion

Day Expert 1 Expert 2 Expert3  Charlie




SIMPLER QUESTION

 One of the n experts never makes a mistake
e We want to find out which one

e Algorithm 3: Take majority vote over experts
that have been correct so far

__________________________________________________________________________________________________________________________

of mistakes?

. 0(1)
2. O(logn)
3. O(n)
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WHAT IF NO EXPERT IS PERFECT?

e Idea: Run algorithm 3 until all experts are
crossed off, then repeat

 Makes at most logn mistakes per mistake
of the best expert

 But this is wasteful: we keep forgetting
what we’ve learned

3 2. 15896 Spring 2015: Lecture 18 Carnegie Mellon University 11




WEIGHTED MAJORITY

e Intuition: Making a mistake doesn’t
disqualify an expert, just lowers its
welight

e Weighted Majority Algorithm:

o otart with all experts having weight 1
o Predict based on weighted majority vote

o Penalize mistakes by cutting weight in
half
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Expert 1 Expert 2 Expert 3  Charlie

Weight 1

Prediction 1

Weight 2

Prediction 2

Weight 3

Wrong, 1

Wrong, 2
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WEIGHTED MAJORITY: ANALYSIS

e M = #mistakes we've made so far
« m = #mistakes of best expert so far
o W = total weight (starts at n)

e TFor each mistake, W drops by at least 25%
= after M mistakes: W < n(3/4)M

 Weight of best expert is (1/2)™

1 m 3 M 4 M
<§) Sn(Z) :>(§) <n2m =M< 2.5(m+logn)
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RANDOMIZED WEIGHTED MAJORITY

e Randomized Weighted Majority
Algorithm:

o otart with all experts having weight 1

o Predict proportionally to weights: the total
weight of + is w, and the total weight of —

w
T and

is w_, predict + with probability

W +w_
W_

— with probability —
+

w_

o Penalize mistakes by removing € fraction of
weight
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RANDOMIZED WEIGHTED MAJORITY

Idea: smooth out the worst case

The worst-case is What about 90-107
~50-50: now we have We're very likely to
a 50% chance of agree with the

getting it right majority
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ANALYSIS

« At time t we have a fraction F; of weight
on experts that made a mistake

 Prob. F; of making a mistake, remove €F;
fraction of total weight

* Wrina = nll(1 — €Fy)
* InWrings =Inn+ X In(1 — €Fy)
<lnhn-—-€);F=Ilnn—eM

!

In(1—-—x) <-—x
(next slide)
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ANALYSIS

B () =In(1-x)
W) =—x
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ANALYSIS

 Weight of best expert is Wyeer = (1 — €)™
e Inn—eM = InWsjpg = InWpeee = min(l — €)

logn

e By setting € = and solving, we get

m

M <m+2/mlogn
e Sincem <T,M <m+ 2,/Tlogn

e Average regret is (Z\/Tlog n)/T -0 m
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MORE GENERALLY

e Fach expert is an action with cost in [0,1]

e Run Randomized Weighted Majority
o Choose expert i with probability w; /W
o Update weights: w; « w;(1 — c;€)

e Same analysis applies:
o Our expected cost: Y. ; cjw; /W
o Fraction of weight removed: € ) ; c;w; /W

o S0, fraction removed = € - (our cost)
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PROOF OF THE MINIMAX THM

 Suppose for contradiction that zero-sum
game G has V. > Vp such that:

o If column player commits first, there is a row
that guarantees row player at least V,

o If row player commits first, there is a column
that guarantees row player at most Vp

* Scale matrix so that payoffs to row player
are in [—1,0], and let Vo =Vi5 + 6
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PROOF OF THE MINIMAX THM

e Row player plays RWM, and column player
responds optimally to current mixed strategy

o After T steps

o ALG = best row in hindsight —2,/T logn
o Best row in hindsight =T -V,

e It follows that T -Vp =T -V, — 2\/T logn

e 0T < 2\/ T logn — contradiction for large
enough T =
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