CMU 15-896

 NONCOOPERATIVE GAMES 1: BASIC CONCEPTSTEACHER:
ARIEL PROCACCIA

NORMAL-FORM GAME

- A game in normal form consists of:
- Set of players $N=\{1, \ldots, n\}$
- Strategy set S
- For each $i \in N$, utility function $u_{i}: S^{n} \rightarrow \mathbb{R}$: if each $\mathfrak{j} \in N$ plays the strategy $s_{j} \in S$, the utility of player i is $u_{i}\left(s_{1}, \ldots, s_{n}\right)$
- Next example created by taking screenshots of http://youtu.be/jILgxeNBK 8

One day your cousin Ted shows up.

His ice cream is identical!

You split the beach in half; you set up at 1/4.

50% of the customers buy from you.

One day Teddy sets up at the $1 / 2$ point!

Now you serve only 37.5% !

The Ice Cream Wars

- $N=\{1,2\}$
- $S=[0,1] \quad\left(\frac{s_{i}+s_{j}}{2}, \quad s_{i}<s_{j}\right.$
- $u_{i}\left(s_{i}, s_{j}\right)=\left\{\begin{array}{lr}1-\frac{s_{i}+s_{j}}{2}, & s_{i}>s_{j} \\ \frac{1}{2}, & s_{i}=s_{j}\end{array}\right.$
- To be continued...

THE PRISONER'S DILEMMA

- Two men are charged with a crime
- They are told that:
- If one rats out and the other does not, the rat will be freed, other jailed for nine years
- If both rat out, both will be jailed for six years
- They also know that if neither rats out, both will be jailed for one year

THE PRISONER'S DILEMMA

Cooperate Defect

Cooperate

$-1,-1$	$-9,0$
$0,-9$	$-6,-6$

What would you do?

Prisoner's dilemma on TV

http://youtu.be/S0qjK3TWZE8

THE PROFESSOR'S DILEMMA

Class

Dominant strategies?

NASH EQUILIBRIUM

- Each player's strategy is a best response to strategies of others
- Formally, a Nash equilibrium is a vector of strategies $s=\left(s_{1} \ldots, s_{n}\right) \in S^{n}$ such that

$$
\forall i \in N, \forall s_{i}^{\prime} \in S, u_{i}(s) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

NASH EQUILIBRIUM

http://youtu.be/CemLiSI5ox8

RUSSEL CROWE WAS WRONG

Home About

Computation, Economics, and Game Theory
« STOC Submissions: message from the
PC Chair
Russell Crowe was wrong
October 30, 2012 by Ariel Procaccia | Edit

Yesterday I taught the first of five algorithmic economics lectures in my undergraduate AI course. This lecture just introduced the basic concepts o making the lecture more lively, and it occurred to me that I could stand an shoulders of giants. Indeed didn't Russell Crowe already explain Nash's ideas in A Beautiful Mind, complete with 1940^{\prime} 's-style male chauvinistic example?
The first and last time I
watched the movie was
when it was released in
2001. Back then I was an
undergrad freshman,

HEY, DR. NASH, ITHINK THOSEGALSOVERTHERE ARE EYEING US. THIS IS LIKE YOUR NASH EQUILIBRIUM, RIGHT? ONE OF THEM IS HOT, BUT WE SHOUL EACH FLIRT WTHH ONE OF HER LESS-DESIRABIE FRIENDS. OTHERWISE WE RISK COMING ON TOO STRONG TO THE HOT ONE AND JUST DRVING THE GROUP OFF.

WELU, THAT'S NOT REALY THE SORT OF situatian I WROE ABOUT. ONCE WERE WITH THE VGLY ONES, THERE'S NO INCENTIVE FOR ONE OF US NOT TO TRY TO SWITCH TO THE HOTONE. ITS NOT A STABLE ECOULIBRIUM.

CRAP, FORGET IT. LOKS LIKE ALL THREE ARE LEAVING WTH ONE GUY.

Intro to CS course, whish week on the programming exercises of Hebrew U^{\prime} ? know called Noam Nisan. I didn't sense at the time.

I easily found the relevant scene on youtube. In the scene, Nash's friends are trying to figure out how to seduce a beautiful blonde and her less beautiful friends. Then Nash/Crowe has an epiphany. The hubbub of the seedy Princeton bar is drowned by inspirational music, as Nash announces:

January 2012
December 2011
November 2011
October 2011
October 2011
September 2011
August 2011
July 2011

End of the Ice Cream Wars

Day 3 of the ice cream wars..

Teddy sets up south of you!

You go south of Teddy.

Nash Equilibrium

15896 Spring 2015: Lecture 17

ROCK-PAPER-SCISSORS

Nash equilibrium?

MIXED STRATEGIES

- A mixed strategy is a probability distribution over (pure) strategies
- The mixed strategy of player $i \in N$ is x_{i}, where

$$
x_{i}\left(s_{i}\right)=\operatorname{Pr}\left[i \text { plays } s_{i}\right]
$$

- The utility of player $i \in N$ is

$$
u_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(s_{1}, \ldots, s_{n}\right) \in S^{n}} u_{i}\left(s_{1}, \ldots, s_{n}\right) \cdot \prod_{j=1}^{n} x_{j}\left(s_{j}\right)
$$

NASH'S THEOREM

- Theorem [Nash, 1950]: if everything is finite then there exists at least one (possibly mixed) Nash equilibrium
- We'll talk about computation some other time

Does NE MAKE SENSE?

- Two players, strategies are $\{2, \ldots, 100\}$
- If both choose the same number, that is what they get
- If one chooses s, the other t, and $s<t$, the former player gets $s+2$, and the latter gets $s-2$
- Poll 1: what would you choose?

15896 Spring 2015: Lecture 17

CORRELATED EQUILIBRIUM

- Let $N=\{1,2\}$ for simplicity
- A mediator chooses a pair of strategies
$\left(s_{1}, s_{2}\right)$ according to a distribution p over S^{2}
- Reveals s_{1} to player 1 and s_{2} to player 2
- When player 1 gets $s_{1} \in S$, he knows that the distribution over strategies of 2 is

$$
\operatorname{Pr}\left[s_{2} \mid s_{1}\right]=\frac{\operatorname{Pr}\left[s_{1} \wedge s_{2}\right]}{\operatorname{Pr}\left[s_{1}\right]}=\frac{p\left(s_{1}, s_{2}\right)}{\sum_{s_{2}^{\prime} \in S} p\left(s_{1}, s_{2}^{\prime}\right)}
$$

CORRELATED EQUILIBRIUM

- Player 1 is best responding if for all $s_{1}^{\prime} \in S$

$$
\sum_{s_{2} \in S} \operatorname{Pr}\left[s_{2} \mid s_{1}\right] u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in S} \operatorname{Pr}\left[s_{2} \mid s_{1}\right] u_{1}\left(s_{1}^{\prime}, s_{2}\right)
$$

- Equivalently,

$$
\sum_{s_{2} \in S} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in S} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}^{\prime}, s_{2}\right)
$$

- p is a correlated equilibrium (CE) if both players are best responding

GAME OF CHICKEN

http://youtu.be/u7hZ9jKrwvo

GAME OF CHICKEN

- Social welfare is the sum of utilities
- Pure NE: (C,D) and (D,C), social welfare $=5$
- Mixed NE: both (1/2,1/2), social welfare $=4$
- Optimal social welfare $=6$

Dare Chicken

Dare

GAME OF CHICKEN

- Correlated equilibrium:

$$
\begin{array}{ll}
\text { - } & (\mathrm{D}, \mathrm{D}): 0 \\
\text { - } & (\mathrm{D}, \mathrm{C}): \frac{1}{3} \\
\text { - } & (\mathrm{C}, \mathrm{D}): \frac{1}{3} \\
\text { - } & (\mathrm{C}, \mathrm{C}): \frac{1}{3}
\end{array}
$$

	Dare	Chicken
Dare	0,0	4,1
Chicken	1,4	3,3

- Social welfare of $\mathrm{CE}=\frac{16}{3}$

IMPLEMENTATION OF CE

- Instead of a mediator, use a hat!
- Balls in hat are labeled with "chicken" or "dare", each blindfolded player takes a ball the distribution of the previous slide?

CE vs. NE

- Poll 2: What is the relation between CE and NE?

1. $\mathrm{CE} \Rightarrow \mathrm{NE}$
2. $\mathrm{NE} \Rightarrow \mathrm{CE}$
3. $\mathrm{NE} \Leftrightarrow \mathrm{CE}$
4. NE || CE

CE As LP

- Can compute CE via linear programming in polynomial time!
find $\forall s_{1}, s_{2} \in S, p\left(s_{1}, s_{2}\right)$
s.t. $\forall s_{1}, s_{1}^{\prime}, s_{2} \in S, \sum_{s_{2} \in A} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in A} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}^{\prime}, s_{2}\right)$

$$
\begin{aligned}
& \forall s_{1}, s_{2}, s_{2}^{\prime} \in S, \sum_{s_{1} \in A} p\left(s_{1}, s_{2}\right) u_{2}\left(s_{1}, s_{2}\right) \geq \sum_{s_{1} \in A} p\left(s_{1}, s_{2}\right) u_{2}\left(s_{1}, s_{2}^{\prime}\right) \\
& \sum_{s_{1}, s_{2} \in S} p\left(s_{1}, s_{2}\right) \\
& \forall s_{1}, s_{2} \in S, p\left(s_{1}, s_{2}\right) \in[0,1]
\end{aligned}
$$

