
Kidney Exchange 
With an emphasis on computation & work from CMU 

John P. Dickerson 
(in lieu of Ariel Procaccia) 

15-896 – Algorithms, Games, and Networks  



Recap: matching 

• Have:  graph G = (V,E) 
• Want:  a matching M 

   (maximizes some objective) 
• Matching: set of edges such that each  

  vertex is included at most once 
 Stable matching problems 

Wanted: matching with no 
  blocking pairs 
Showed: often doable! 



Today’s lecture: kidney exchange 

Hmm … 

Hmm … Hmm … 

Al Roth Utku Ünver Tayfun Sönmez 



This talk 

• Motivation – sourcing organs for needy patients 
• Computational dimensions of organ exchange 

– Dimension #1: Post-match failure 
– Dimension #2: Egalitarianism 
– Dimension #3: Dynamism 

• FutureMatch framework 
– Preliminary results from CMU on real data 

• Take-home message & future research 

This is a fairly CMU-centric lecture because some of it is on my thesis work, but I am 
happy to talk about anything related to kidney exchange! 
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High-Level Motivation 
Organ Failure 
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Kidney Failure 



Kidney transplantation in the US 

• US waitlist: over 100,000 
– 36,395 added in 2013 

• 4,421 people died while waiting 
• 11,152 people received a kidney from the 

deceased donor waitlist 
• 5,264 people received a kidney from a living 

donor 
– Some through kidney exchanges! 
– Our software runs UNOS national kidney exchange 
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Non-directed donors & chains 

• Not executed simultaneously, so no length cap 
required based on logistic concerns 
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Fielded exchanges around the world 

• NEPKE (started 2003/2004, now closed) 
• United Network for Organ Sharing (UNOS) 

– US-wide, 140+ transplant centers 
– Went live Oct. 2010, conducts biweekly matches 

• Alliance for Paired Donation 
• Paired Donation Network (now closed) 
• National Kidney Registry (NKR) 
• San Antonio 
• Canada 
• Netherlands 
• England 
• Portugal (just started!) 
• Israel (about to start) 
• Others …? 

Around 1000 
transplants in US, 
driven by chains! 

(Current as of late 2014) 9 



Clearing problem 

• k-cycle (k-chain): a cycle (chain) over k vertices 
in the graph such that each candidate obtains 
the organ of the neighboring donor 
 

• The clearing problem is to find the “best” 
disjoint collection consisting of cycles of 
length at most L, and chains 
– Typically, 2 ≤ L ≤ 5 for kidneys (e.g., L=3 at UNOS) 
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Hardness & formulation 

• L=2: polynomial time 
• L>2: NP-complete [Abraham, Blum, Sandholm 2007] 

– Significant gains from using L>2 
 

• State of the art (national kidney exchange): 
– L=3 
– Formulate as MIP, one decision variable per cycle 
– Specialized branch-and-price can scale to 10,000 

patient-donor pairs (cycles only) [Abraham, Blum, Sandholm 2007] 

– Harder in practice (+chains) 

“Best” = maximum cardinality 
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Basic IP formulation #1 

• Binary variable xij for each edge from i to j 
Maximize 
 Σ xij 

Subject to 
 Σj xij = Σj xji   for each vertex i 
 Σj xij ≤ 1   for each vertex i 
 Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1) 
  (no path of length L that doesn’t end where it started – cycle cap) 
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“Best” = maximum cardinality 



Basic IP formulation #2 

• Binary variable xc for each cycle/chain c of 
length at most L 

Maximize 
 Σ |c|xc 

Subject to 
 Σc : i in c xc ≤ 1 for each vertex i 
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“Best” = maximum cardinality 



Comparison 

• IP #1 is the most basic edge formulation 
• IP #2 is the most basic cycle formulation 
• Tradeoffs in number of variables, constraints 

– IP #1: O(|E|L) constraints vs. O(|V|) for IP #2 
– IP #1: O(|V|2) variables vs. O(|V|L) for IP #2 

• IP #2’s relaxation is weakly tighter than #1’s.  
Quick intuition in one direction:  
– Take a length L+1 cycle.  #2’s LP relaxation is 0. 
– #1’s LP relaxation is (L+1)/2 – ½ on each edge 
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“Best” = maximum cardinality 



The big problem 

• What is “best”? 
– Maximize matches right now or over time? 
– Maximize transplants or matches? 
– Prioritization schemes (i.e. fairness)? 
– Modeling choices? 
– Incentives? Ethics? Legality? 

• Optimization can handle this, but may be 
inflexible in hard-to-understand ways 

 Want humans in the loop at a high level (and 
then CS/Opt handles the implementation) 15 



Dimension #1: Post-Match Failure 
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Matched ≠ Transplanted 

• Only around 8% of UNOS matches resulted in 
an actual transplant 
– Similarly low % in other exchanges [ATC 2013] 

 
• Many reasons for this.  How to handle? 

 
• One way: encode probability of 

transplantation rather than just feasibility 
– for individuals, cycles, chains, and full matchings 
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Failure-aware model 

• Compatibility graph G 
– Edge (vi, vj) if vi’s donor can donate to vj’s patient  
– Weight we on each edge e 

• Success probability qe for each edge e 
 

• Discounted utility of cycle c 
u(c) = ∑we  ∏qe 

Value of successful cycle Probability of success 
18 



Failure-aware model 

• Discounted utility of a k-chain c 
 
 
 
 

• Cannot simply “reweight by failure 
probability” 
 

• Utility of a match M:     u(M) = ∑ u(c) 
 

Exactly first i transplants Chain executes in entirety 
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Our problem 

• Discounted clearing problem is to find 
matching M* with highest discounted utility 

1 2 

3 

Maximum cardinality Maximum expected transplants 
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Theoretical result #1 



• G(n, t(n), p): random graph with 
– n patient-donor pairs 
– t(n) altruistic donors 
– Probability Θ(1/n) of incoming edges 

• Constant transplant success probability q 

Theorem 
 
 
For all q∈ (0,1) and α, β > 0, given a large G(n, αn, β/n), w.h.p. there exists 
some matching M’ s.t. for every maximum cardinality matching M, 
 

 uq(M’) ≥ uq(M) + Ω(n) 
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Brief intuition: Counting Y-gadgets 

• For every structure X of constant size, w.h.p. can find Ω(n) 
structures isomorphic to X and isolated from the rest of the graph 

• Label them (alt vs. pair): flip weighted coins, constant fraction are 
labeled correctly  constant × Ω(n) = Ω(n) 

• Direct the edges: flip 50/50 coins, constant fraction are entirely 
directed correctly  constant × Ω(n) = Ω(n) 
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In theory, we’re losing out on expected actual 
transplants by maximizing match cardinality. 
 
 

… What about in practice? 
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UNOS 
2010-2014 

25 



Solving this new problem 

• Real-world kidney exchanges are still small 
– UNOS pool: 277 donors, 258 patients [1 Nov 2014] 

• Undiscounted clearing problem is NP-hard 
when cycle/chain cap L ≥ 3 [Abraham et al. 2007] 

– Special case of our problem 
 

• The current UNOS solver will not scale to the 
projected nationwide steady-state of 10,000 
– Empirical intractability driven by chains 
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We can’t use the current solver 

• Branch-and-bound IP solvers use upper and 
lower bounds to prune subtrees during search 

• Upper bound: cycle cover with no length cap 
–  PTIME through max weighted perfect matching 

Proposition: 
 
 

The unrestricted discounted maximum cycle cover 
problem is NP-hard.  

 
(Reduction from 3D-Matching) 
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Incrementally solving very large IPs 

• #Decision variables grows linearly with #cycles 
and #chains in the pool 
– Millions, billions of variables 
– Too large to fit in memory 

• Branch-and-price incrementally brings variables 
into a reduced model [Barnhart et al. 1998]  

• Solves the “pricing problem” – each variable gets 
a real-valued price  
– Positive price  resp. constraint in full model violated 
– No positive price cycles  optimality at this node 
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Considering only “good” chains 

Donation to 
waitlist 

Discounted utility of 
current chain 

Optimistic future value of 
infinite extension 

Pessimistic sum of LP dual 
values in model 

Theorem: 
Given a chain c, any extension c’ will not be needed in an optimal solution if 
the infinite extension has non-positive value. 

29 



Scaling experiments 
|V| CPLEX Ours Ours without chain curtailing 

10  127 / 128   128 / 128  128 / 128  
25  125 / 128   128 / 128  128 / 128  
50  105 / 128   128 / 128  125 / 128  
75  91 / 128   126 / 128  123 / 128  

100  1 / 128   121 / 128  121 / 128  
150    114 / 128  95 / 128  
200    113 / 128  76 / 128  
250     94 / 128  48 / 128  
500     107 / 128  1 / 128  
700     115 / 128    
900     38 / 128    

1000         

• Runtime limited to 60 minutes; each instance given 8GB of RAM. 
• |V| represents #patient-donor pairs; additionally, 0.1|V| altruistic donors are present. 
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In theory and practice, we’re helping the global 
bottom line by considering post-match failure … 
 
 

… But can this hurt some individuals? 
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Dimension #2: Egalitarianism 
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Sensitization at UNOS 
• Highly-sensitized patients: unlikely to be 

compatible with a random donor 

• Deceased donor 
waitlist: 17% 

• Kidney exchanges: 
much higher (60%+) 

“Hard to match” patients 

“Easy to match” patients 
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Price of fairness 

• Efficiency vs. fairness: 
– Utilitarian objectives may favor certain classes at 

the expense of marginalizing others 
– Fair objectives may sacrifice efficiency in the name 

of egalitarianism 
 

• Price of fairness: relative system efficiency 
loss under a fair allocation [Bertismas, Farias, Trichakis 2011] 

[Caragiannis et al. 2009] 
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Price of fairness in kidney exchange  

• Recall: want a matching M* that maximizes 
utility function  

• Price of fairness: relative loss of match 
efficiency due to fair utility function  
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Theoretical result #2 



Under the “most stringent” fairness rule: 
 

Theorem 
 

Assume “reasonable” level of sensitization and “reasonable” distribution of blood 
types.  Then, almost surely as n  ∞, 
 
 
 
 
(And this is achieved using cycles of length at most 3.)   
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Linear 
efficiency loss 

Sublinear loss 
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From theory to practice 

• Price of fairness is low in theory 
• Fairness criterion: extremely strict. 
• Theoretical assumptions (standard): 

– Big graphs (“n  ∞”) 
– Dense graphs 
– Cycles (no chains) 
– No post-match failures 
– Simplified patient-donor features 

 

What about the price of fairness in practice? 
39 



Toward usable fairness rules 

• In healthcare, important to work within (or 
near to) the constraints of the fielded system 
– [Bertsimas, Farias, Trichakis 2013] 
– Our experience with UNOS 

 
• We now present two (simple, intuitive) rules: 

– Lexicographic: strict ordering over vertex types 
– Weighted: implementation of “priority points” 
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Lexicographic fairness 

• Matching-wide constraint: 
– Present-day branch-and-price IP solvers rely on an 

“easy” way to solve the pricing problem 
– Lexicographic constraints  pricing problem 

requires an IP solve, too! 
• Strong guarantee on match composition … 

– … but harder to predict effect on efficiency 

Find the best match that includes at least α 
fraction of highly-sensitized patients. 
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Weighted fairness 

• Re-weighting is a preprocess  works with all 
present-day kidney exchange solvers 
 

• Difficult to find a “good” β? 
– Empirical exploration helps strike a balance 

Value matching a highly-sensitized patient at 
(1+β) that of a lowly-sensitized patient, β>0 
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Theory vs. “Practice” 
Lexicographic fairness 
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Price of fairness: Generated data 

• Average (st.dev.) % loss in efficiency for three families 
of random graphs, under the strict lexicographic rule. 

• Good: aligns with the theory  
• Bad: standard generated models aren’t realistic 

 

Size Saidman (US) Saidman (UNOS) Heterogeneous 
10  0.24% (1.98%)   0.00% (0.00%)   0.98% (5.27%)   
25  0.58% (1.90%)   0.19% (1.75%)   0.00% (0.00%)   
50  1.18% (2.34%)   1.96% (6.69%)   0.00% (0.00%)   

100  1.46% (1.80%)   1.66% (3.64%)   0.00% (0.00%)   
150  1.20% (1.86%)   2.04% (2.51%)   0.00% (0.00%)   
200  1.43% (2.08%)   1.55% (1.79%)   0.00% (0.00%)   
250  0.80% (1.24%)   1.86% (1.63%)   0.00% (0.00%)   
500  0.72% (0.74%)   1.67% (0.82%)   0.00% (0.00%)   
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Real UNOS runs 
Lexicographic fairness, varying failure rates 
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Real UNOS runs 
Weighted fairness, varying failure rates 
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Contradictory goals 

• Earlier, we saw failure-aware matching results 
in tremendous gains in #expected transplants  

• Gain comes at a price – may further 
marginalize hard-to-match patients because: 
– Highly-sensitized patients tend to be matched in 

chains 
– Highly-sensitized patients may have higher failure 

rates (in APD data, not in UNOS data) 
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Real UNOS runs, weighted fairness, constant probability of failure (x-axis), 
increase in expected transplants over deterministic matching (y-axis) 

50 



Generated UNOS runs, weighted fairness, constant 
probability of failure (x-axis), increase in expected 
transplants over deterministic matching (y-axis) 

UNOS distributional generator 
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Generated (top row) and real (bottom row) UNOS runs, weighted fairness (x-axis), 
bimodal failure probability (APD failures in left column, UNOS failures in right column), 
increase in expected transplants over deterministic matching (y-axis) 52 



Fairness vs. efficiency can be balanced in theory 
and in practice in a static model … 
 
 

… But how should we match over time? 
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Dimension #3: Dynamism 
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Dynamic kidney exchange 

• Kidney exchange is a naturally dynamic event 
• Can be described by the evolution of its graph: 

– Additions, removals of edges and vertices 

 Vertex Removal Edge Removal Vertex/Edge Add 
Transplant, this exchange                Matched, positive crossmatch Normal entrance 
Transplant, deceased donor 
waitlist      Matched, candidate refuses donor   
Transplant, other exchange 
("sniped")  Matched, donor refuses candidate 
Death or illness                         Pregnancy, sickness changes HLA  
Altruist runs out of patience              
Bridge donor reneges                       
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Our dynamic model 
 

 

 



Dynamic matching via potentials 

• Full optimization problem is very difficult 
– Realistic theory is too complex 
– Trajectory-based methods do not scale 

• Approximation idea:  
– Associate with each “element type” its potential 

to help objective in the future 
– (Must learn these potentials) 
– Combine potentials with edge weights, perform 

myopic maximum utility matching 
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What’s a potential? 

• Given a set of features Θ representing 
structural elements (e.g., vertex, edge, 
subgraph type) of a problem: 
– The potential Pθ for a type θ quantifies the future 

usefulness of that element 
 

• E.g., let Θ = {O-O, O-A, …, AB-AB, -O, …, -AB} 
– 16 patient-donor types, 4 altruist types 
– O-donors better than A-donors, so: P-O > P-A 
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Using potentials to inform myopia 

• Using heavy one-time computation to learn 
potential of each type θ 

• Adjust solver to take them into account at 
runtime 
 

• E.g., P-O = 2.1 and PO-AB = 0.1 
– Edges between O-altruist and O-AB pair has 

weight: 1 – 0.5(2.1+0.1) = -0.1 
– Chain must be long enough to offset negative 

weight 
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Potentials: simple example 

• Potentials assigned only on whether or not a 
vertex is an altruist 

• Two time periods 
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Expressiveness Theory 

Expressiveness tradeoff 

• In kidney exchange: 
– 20 vertex types 
– 244 edge types (208 cyclic edges, 36 chain edges) 
– 1000s of 3-cycle types, et cetera. 

• Allowing larger structural elements: 
– increases expressive power of potentials 
– increases size of hypothesis space to explore 

61 

Is it that bad in practice? 
Vertex vs. Edge: lose at least 1/3 
Edge vs. Cycle: lose at least ½ 
Cycle vs. Graph: lose at least (L-1)/L 



Simulation results 
Vertex potentials 
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We can learn to maximize a utility function over 
time (negative theory, positive experiments) … 
 
 

… But how should we choose an objective? 
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FutureMatch 
A framework for learning to match in dynamic environments 

65 

[Dickerson Sandholm AAAI-2015] 



Balancing failure and fairness 

• Saw that we can strike a balance realizing 
gains of both matching methods 

• Highly dependent on distribution of graphs 
• Useful empirical visualization tool for 

policymakers needing to, e.g., define 
“acceptable” price of fairness 

What about fairness-aware, failure-aware, 
dynamic matching? 
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FutureMatch: Learning to match in dynamic environments 

1. Domain expert describes overall goal  
2. Take historical data and policy input to learn a weight function w for match quality 
3. Take historical data and create a graph generator with edge weights set by w 
4. Using this generator and a realistic exchange simulator, learn potentials for graph 

elements as a function of the exchange dynamics 
 

Offline (run once or periodically) 

1. Combine w and potentials to form new edge weights on real input graphs 
2. Solve maximum weighted matching and return match 

Online (run every match) 
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Example objective: MaxLife 

• Maximize the aggregate length of time donor 
organs will last in patients … 
– … with fairness “nobs”, failure-awareness, etc. 

68 

• Learn survival rates from 
all living donations in US 
since 1987 (~75k trans.) 

• Translate to edge weight 
• Learn potentials, then 

combine into new weights 



• We show it is possible to: 
– Increase overall #transplants a lot at a (much) 

smaller decrease in #marginalized transplants 
– Increase #marginalized transplants a lot at no or 

very low decrease in overall #transplants 
– Increase both #transplants and #marginalized 

• Again, sweet spot depends on distribution: 
– Luckily, we can generate – and learn from – 

realistic families of graphs! 

The details are in the paper, but … 
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Take-home message 

• Contradictory wants in kidney exchange! 
 

• In practice, can (automatically) strike a 
balance between these wants 
– Keeps the human in the loop 

 
• Some improvements (e.g., failure-awareness) 

are unilaterally good, given the right balance 
with other wants 
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Lots left to do! 

• Fairness: 
– Theoretical guarantees in better models 
– More general definitions 

• Modeling: 
– More accurate models (multiple exchanges, 

legality, more features on patient/donor) 
• Dynamics: 

– Better optimization methods 
– Faster “means vs. ends” loop with humans 
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Moving beyond kidneys 
• Chains are great! [Anderson et al. 2015, Ashlagi et al. 2014, Rees et al. 2009] 

• Kidney transplants are “easy” and popular: 
– Many altruistic donors 

• Liver transplants: higher mortality, morbidity: 
– (Essentially) no altruistic donors 
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[Dickerson Sandholm AAAI-2014] 
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FutureMatch + multi-organ exchange? 

• Combination results in 
– Linear gain in theory 
– Big gains in simulation 

• Equity problems 
– Kidneys ≠ livers 
– Hard to quantify cross-

organ risk vs. reward 
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• 16.8% increase in total matches, 
combined pool vs. independent pools 

• Independent samples t-test reveals 
statistical significance: 

• T(46) = 31.37, p < 0.0001 Let FutureMatch 
sort it out? Also: lung exchange! 

[Ergin Sönmez Ünver 2015] 



Questions? 

Pubs: jpdickerson.com/pubs/dickerson15futurematch.pdf 
 jpdickerson.com/pubs.html 
Code: github.com/JohnDickerson/KidneyExchange 
 

Very incomplete list of CMU folks working on kidney exchange/matching: 
{ Avrim Blum, John Dickerson, Alan Frieze, Anupam Gupta, Nika Haghtalab, 
Jamie Morgenstern, Ariel Procaccia, R. Ravi, Tuomas Sandholm } 

 
 
 

Thanks to: 
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Kidney Exchange 
 

Backup Slides 
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• Efficient matching with cycles and chains of 
length at most 3 in a dense kidney exchange ABO 
model [Dickerson Procaccia Sandholm AAMAS-2012] 
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Simulating dynamic kidney exchange (two time periods) 
77 



Generated UNOS runs, median number of transplants as 
|V| increases (x-axis) for each of the objective functions. 
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Price of fairness: UNOS data 

• Minimum, average, and maximum loss in 
objective value and match size due to the 
strict lexicographic fairness rule, across the 
first 73 UNOS match runs, in a deterministic 
model. 

Metric Minimum  Average Maximum  St. Dev.  
Loss % (Objective)  0.00% 2.76% 19.04% 4.84% 

Loss % (Cardinality)  0.00% 4.09% 33.33% 8.18% 
Loss (Cardinality)  0 0.55 4 1.1 
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