

TEACHER: ARIEL PROCACCIA

INDIVISIBLE GOODS

- Set G of m goods
- Each good is indivisible
- Players $N = \{1, ..., n\}$ have arbitrary valuations V_i for bundles of goods
- Envy-freeness and proportionality are infeasible!

MINIMIZING ENVY

• Given allocation A, denote $e_{ij}(A) = \max\{0, V_i(A_j) - V_i(A_i)\}$ $e(A) = \max\{e_{ij}(A): i, j \in N\}$

 Theorem [Nisan and Segal 2002]: Every protocol that finds an allocation minimizing e(A) must use an exponential number of bits of communication in the worst case

COMMUNICATION COMPLEXITY

- Protocol defined by a binary tree
- Complexity is the height of the tree
- Complexity of a problem is the height of the shortest tree

15896 Spring 2015: Lecture 11

PROOF OF THEOREM

- Let m = 2k
- \mathcal{F} is a set of functions s.t. for all $V \in \mathcal{F}$, $S \subseteq G$,

$$V(S) = \begin{cases} 1 & |S| > k \\ 0 & |S| < k \\ 1 - V(G \setminus S) & |S| = k \end{cases}$$

•
$$|\mathcal{F}| = 2^{\binom{m}{k}}$$

m

15896 Spring 2015: Lecture 11

PROOF OF THEOREM

- Suppose n=2, and denote a valuation profile by $(U,V)\in \mathcal{F}^2$
- Lemma: Suppose $U \in \mathcal{F}, V \in \mathcal{F} \setminus \{U\}$, then the sequence of bits transmitted on input (U, U) is different from the sequence transmitted on (V, V)
- Assume the lemma is true, then there must be at least $|\mathcal{F}|$ sequences, and the height of the tree must be at least $\log |\mathcal{F}| = \binom{m}{k}/2$

PROOF OF LEMMA

• Assume not; then (U, V) and (V, U)generate the same sequence

15896 Spring 2015: Lecture 11

15896 Spring 2015: Lecture 11

PROOF OF LEMMA

- If $U \neq V$, $\exists T \subset G$ such that U(T) = 1, V(T) = 0
- The allocation $(T, G \setminus T)$ is EF for (U, V), $(G \setminus T, T)$ is EF for (V, U)
- Given (U, V), protocol produces an EF $(S, G \setminus S) \Rightarrow U(S) = 1, V(G \setminus S) = 1$
- $(S, G \setminus S)$ is also returned on (V, U), but is not EF \blacksquare

APPROXIMATE EF

- Define the maximum marginal utility $\alpha = \max\{V_i(S \cup \{x\}) - V_i(S): i, x, S\}$
- Theorem [Lipton et al. 2004]: An allocation with $e(A) \leq \alpha$ can be found in polynomial time
- Note: we are still not assuming anything about the valuation functions!

PROOF OF THEOREM

- Given allocation A, we have an edge (i, j) in its envy graph if i envies j
- Lemma: Given partial allocation A with envy graph G, can find allocation B with acyclic envy graph H s.t. $e(B) \leq e(A)$

PROOF OF LEMMA

- If G has a cycle C, shift allocations along C to obtain A'; clearly $e(A') \leq e(A)$
- #edges in envy graph of A' decreased:
 - $_{\circ}$ $\,$ Same edges between $N\setminus C$
 - Edges from $N \setminus C$ to C shifted

 - Edges inside C decreased
- Iteratively remove cycles

15896 Spring 2015: Lecture 11

PROOF OF THEOREM

- Maintain envy $\leq \alpha$ and acyclic graph
- In round 1, allocate good g_1 to arbitrary agent
- g_1, \ldots, g_{k-1} are allocated in acyclic A
- Derive **B** by allocating g_k to source *i*
- $e_{ji}(B) \leq e_{ji}(A) + \alpha = \alpha$
- Use lemma to eliminate cycles \blacksquare

EF CAKE CUTTING, REVISITED

- Want to get ϵ -EF cake division
- Agent *i* makes $1/\epsilon$ marks $x_1^i, \dots, x_{1/\epsilon}^i$ such that for every $k, V_i([x_k^i, x_{k+1}^i]) = \epsilon$
- If intervals between consecutive marks are indivisible goods then $\alpha \leq \epsilon$
- Now we can apply the theorem
- Need n/ϵ cut queries and n^2/ϵ eval queries

AN EVEN SIMPLER SOLUTION

- Relies on additive valuations
- Create the "indivisible goods" like before
- Agents choose pieces in a round-robin fashion: 1, ..., n, 1, ..., n, ...
- Each good chosen by agent i is preferred to the next good chosen by agent j
- This may not account for the first good g chosen by j, but $V_i(\{g\}) \leq \epsilon$

MAXIMIN SHARE GUARANTEE

- Let us focus on indivisible goods and additive valuations
- Communication complexity is not an issue
- But computational complexity is
- Observation: Deciding whether there exists an EF allocation is NP-hard, even for two players with identical valuations

MAXIMIN SHARE GUARANTEE

15896 Spring 2015: Lecture 11

• Maximin share (MMS) guarantee [Budish, 2011] of player *i*:

 $\max_{X_1,\dots,X_n} \min_j V_i(X_j)$

• Theorem [P & Wang, 2014]: $\forall n \geq 3$ there exist additive valuation functions that do not admit an MMS allocation

Counterexample for n = 3

15896 Spring 2015: Lecture 11

Counterexample for n = 3

15896 Spring 2015: Lecture 11

• Maximin share (MMS) guarantee [Budish, 2011] of player *i*:

 $\max_{X_1,\dots,X_n} \min_j V_i(X_j)$

- Theorem [P & Wang, 2014]: $\forall n \geq 3$ there exist additive valuation functions that do not admit an MMS allocation
- Theorem [P & Wang, 2014]: It is always possible to guarantee each player 2/3 of his MMS guarantee