CMU 15-896

FAIR DIVISION 4: INDIVISIBLE GOODS

TEACHER:
ARIEL PROCACCIA

Indivisible goods

- Set G of m goods
- Each good is indivisible
- Players $N=\{1, \ldots, n\}$ have arbitrary valuations
 V_{i} for bundles of goods
- Envy-freeness and proportionality are infeasible!

MINIMIZING ENVY

- Given allocation \boldsymbol{A}, denote

$$
\begin{aligned}
& e_{i j}(\boldsymbol{A})=\max \left\{0, V_{i}\left(A_{j}\right)-V_{i}\left(A_{i}\right)\right\} \\
& e(\boldsymbol{A})=\max \left\{e_{i j}(\boldsymbol{A}): i, j \in N\right\}
\end{aligned}
$$

- Theorem [Nisan and Segal 2002]: Every protocol that finds an allocation minimizing $e(\boldsymbol{A})$ must use an exponential number of bits of communication in the worst case

COMMUNICATION COMPLEXITY

- Protocol defined by a binary tree
- Complexity is the height of the tree
- Complexity of a problem is the height of the shortest tree

PROOF OF THEOREM

- Let $m=2 k$
- \mathcal{F} is a set of functions s.t. for all $V \in \mathcal{F}$, $S \subseteq G$,

$$
V(S)= \begin{cases}1 & |S|>k \\ 0 & |S|<k \\ 1-V(G \backslash S) & |S|=k\end{cases}
$$

- $|\mathcal{F}|=2^{\frac{\binom{m}{k}}{2}}$

PROOF OF THEOREM

- Suppose $n=2$, and denote a valuation profile by $(U, V) \in \mathcal{F}^{2}$
- Lemma: Suppose $U \in \mathcal{F}, V \in \mathcal{F} \backslash\{U\}$, then the sequence of bits transmitted on input (U, U) is different from the sequence transmitted on (V, V)
- Assume the lemma is true, then there must be at least $|\mathcal{F}|$ sequences, and the height of the tree must be at least $\log |\mathcal{F}|=\binom{m}{k} / 2 ■$

PROOF OF LEMMA

- Assume not; then (U, V) and (V, U) generate the same sequence

15896 Spring 2015: Lecture 11
Carnegie Mellon University 8

PROOF OF LEMMA

- If $U \neq V, \exists T \subset G$ such that $U(T)=1$, $V(T)=0$
- The allocation $(T, G \backslash T)$ is EF for (U, V), $(G \backslash T, T)$ is EF for (V, U)
- Given (U, V), protocol produces an EF $(S, G \backslash S) \Rightarrow U(S)=1, V(G \backslash S)=1$
- $(S, G \backslash S)$ is also returned on (V, U), but is not EF ■

Approximate EF

- Define the maximum marginal utility

$$
\alpha=\max \left\{V_{i}(S \cup\{x\})-V_{i}(S): i, x, S\right\}
$$

- Theorem [Lipton et al. 2004]: An allocation with $e(A) \leq \alpha$ can be found in polynomial time
- Note: we are still not assuming anything about the valuation functions!

PROOF OF THEOREM

- Given allocation \boldsymbol{A}, we have an edge (i, j) in its envy graph if i envies j
- Lemma: Given partial allocation \boldsymbol{A} with envy graph G, can find allocation \boldsymbol{B} with acyclic envy graph H s.t. $e(\boldsymbol{B}) \leq e(\boldsymbol{A})$

PROOF OF LEMMA

- If G has a cycle C, shift allocations along C to obtain \boldsymbol{A}^{\prime}; clearly $e\left(\boldsymbol{A}^{\prime}\right) \leq e(\boldsymbol{A})$
- \#edges in envy graph of \boldsymbol{A}^{\prime} decreased:
- Same edges between $N \backslash C$
- Edges from $N \backslash C$ to C shifted
- Edges from C to $N \backslash C$ can only decrease
- Edges inside C decreased
- Iteratively remove cycles ■

15896 Spring 2015: Lecture 11

PROOF OF THEOREM

- Maintain envy $\leq \alpha$ and acyclic graph
- In round 1, allocate good g_{1} to arbitrary agent
- g_{1}, \ldots, g_{k-1} are allocated in acyclic \boldsymbol{A}
- Derive \boldsymbol{B} by allocating g_{k} to source i
- $e_{j i}(B) \leq e_{j i}(A)+\alpha=\alpha$
- Use lemma to eliminate cycles ■

EF CAKE CUTTING, REVISITED

- Want to get ϵ-EF cake division
- Agent i makes $1 / \epsilon$ marks $x_{1}^{i}, \ldots, x_{1 / \epsilon}^{i}$ such that for every $k, V_{i}\left(\left[x_{k}^{i}, x_{k+1}^{i}\right]\right)=\epsilon$
- If intervals between consecutive marks are indivisible goods then $\alpha \leq \epsilon$
- Now we can apply the theorem
- Need n / ϵ cut queries and n^{2} / ϵ eval queries

AN EVEN SIMPLER SOLUTION

- Relies on additive valuations
- Create the "indivisible goods" like before
- Agents choose pieces in a round-robin fashion: $1, \ldots, n, 1, \ldots, n, \ldots$
- Each good chosen by agent i is preferred to the next good chosen by agent j
- This may not account for the first good g chosen by j, but $V_{i}(\{g\}) \leq \epsilon$

MAXIMIN SHARE GUARANTEE

- Let us focus on indivisible goods and additive valuations
- Communication complexity is not an issue
- But computational complexity is
- Observation: Deciding whether there exists an EF allocation is NP-hard, even for two players with identical valuations

MAXIMIN SHARE GUARANTEE

15896 Spring 2015: Lecture 11
Carnegie Mellon University 17

- Maximin share (MMS) guarantee [Budish, 2011] of player i :

$$
\max _{X_{1}, \ldots, X_{n}} \min _{j} V_{i}\left(X_{j}\right)
$$

- Theorem [P \& Wang, 2014]: $\forall n \geq 3$ there exist additive valuation functions that do not admit an MMS allocation

COUNTEREXAMPLE FOR $n=3$

17	25	12	1
2	22	3	28
11	0	21	23

COUNTEREXAMPLE FOR $n=3$

1	1	1	1					
1	1	1	1					
1	1	1	1	$\mathbf{4}+\mathbf{0}^{6}+$	17	25	12	1
:---:	:---:	:---:	:---:					
2	22	3	28					
11	0	21	23	$\times 10^{3}+$				

3	-1	-1	-1
0	0	0	0
0	0	0	0

Player 1

3	-1	0	0
-1	0	0	0
-1	0	0	0
Player 2			

3	0	-1	0
0	0	-1	0
0	0	0	-1
Player 3			

15896 Spring 2015: Lecture 11
Carnegie Mellon University 20

- Maximin share (MMS) guarantee [Budish, 2011] of player i :

$$
\max _{X_{1}, \ldots, X_{n}} \min _{j} V_{i}\left(X_{j}\right)
$$

- Theorem [P \& Wang, 2014]: $\forall n \geq 3$ there exist additive valuation functions that do not admit an MMS allocation
- Theorem [P \& Wang, 2014]: It is always possible to guarantee each player 2/3 of his MMS guarantee

