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Indivisible goods 

• Set 𝐺 of 𝑚 goods  
• Each good is indivisible 
• Players 𝑁 = 1, … ,𝑛  

have arbitrary valuations 
𝑉𝑖 for bundles of goods 

• Envy-freeness and 
proportionality are 
infeasible! 
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Minimizing envy 

• Given allocation 𝑨, denote 
𝑒𝑖𝑖 𝑨 =  max 0,𝑉𝑖 𝐴𝑗 − 𝑉𝑖 𝐴𝑖  
𝑒 𝑨 =  max{𝑒𝑖𝑖 𝑨 :  𝑖, 𝑗 ∈ 𝑁} 

• Theorem [Nisan and Segal 2002]: Every 
protocol that finds an allocation 
minimizing 𝑒(𝑨) must use an exponential 
number of bits of communication in the 
worst case 
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Communication complexity 

• Protocol defined by a 
binary tree 

• Complexity is the 
height of the tree 

• Complexity of a 
problem is the height 
of the shortest tree 
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Proof of theorem 

• Let 𝑚 = 2𝑘 
• ℱ is a set of functions s.t. for all 𝑉 ∈ ℱ, 
𝑆 ⊆ 𝐺, 

𝑉 𝑆 = �
1                       𝑆 > 𝑘
0                       𝑆 < 𝑘
1 − 𝑉 𝐺\S    𝑆 = 𝑘

 

• ℱ = 2
𝑚
𝑘
2  

5 



15896 Spring 2015: Lecture 11 

Proof of theorem  
• Suppose 𝑛 = 2, and denote a valuation 

profile by 𝑈,𝑉 ∈ ℱ2 
• Lemma: Suppose 𝑈 ∈ ℱ,𝑉 ∈ ℱ ∖ {𝑈}, then 

the sequence of bits transmitted on input 
(𝑈,𝑈) is different from the sequence 
transmitted on (𝑉,𝑉) 

• Assume the lemma is true, then there must 
be at least ℱ  sequences, and the height of 
the tree must be at least log |ℱ| = 𝑚

𝑘 /2 ∎ 
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Proof of lemma 

• Assume not; then (𝑈,𝑉) and (𝑉,𝑈) 
generate the same sequence  
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Proof of lemma 

• If 𝑈 ≠ 𝑉, ∃𝑇 ⊂ 𝐺 such that 𝑈 𝑇 = 1, 
𝑉 𝑇 = 0 

• The allocation (𝑇,𝐺 ∖ 𝑇) is EF for (𝑈,𝑉), 
(𝐺 ∖ T,𝑇) is EF for (𝑉,𝑈) 

• Given (𝑈,𝑉), protocol produces an EF 
(𝑆,𝐺 ∖ 𝑆) ⇒ 𝑈 𝑆 = 1, 𝑉 𝐺 ∖ 𝑆 = 1 

• (𝑆,𝐺 ∖ 𝑆) is also returned on (𝑉,𝑈), but is 
not EF ∎ 
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Approximate EF 

• Define the maximum marginal utility 
𝛼 = ma𝑥{𝑉𝑖 𝑆 ∪ 𝑥 − 𝑉𝑖 𝑆 :  𝑖, 𝑥, 𝑆} 

• Theorem [Lipton et al. 2004]: An 
allocation with 𝑒 𝐴 ≤ 𝛼 can be found in 
polynomial time 

• Note: we are still not assuming anything 
about the valuation functions! 
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Proof of Theorem 

• Given allocation 𝑨, we have an edge (𝑖, 𝑗) 
in its envy graph if 𝑖 envies 𝑗 

• Lemma: Given partial allocation 𝑨 with 
envy graph 𝐺, can find allocation 𝑩 with 
acyclic envy graph 𝐻 s.t. 𝑒 𝑩 ≤ 𝑒(𝑨) 

11 



15896 Spring 2015: Lecture 11 

Proof of lemma 
• If 𝐺 has a cycle 𝐶, shift 

allocations along 𝐶 to obtain 𝑨′; 
clearly 𝑒 𝑨′ ≤ 𝑒 𝑨  

• #edges in envy graph of 𝑨′ 
decreased:  
o Same edges between 𝑁 ∖ 𝐶 
o Edges from 𝑁 ∖ 𝐶 to 𝐶 shifted 
o Edges from 𝐶 to 𝑁 ∖ 𝐶 can only 

decrease 
o Edges inside C decreased 

• Iteratively remove cycles ∎ 
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Proof of theorem 

• Maintain envy ≤ 𝛼 and acyclic graph 
• In round 1, allocate good 𝑔1 to arbitrary 

agent 
• 𝑔1, … ,𝑔𝑘−1 are allocated in acyclic 𝑨 
• Derive 𝑩 by allocating 𝑔𝑘 to source 𝑖 
• 𝑒𝑗𝑗 𝐵 ≤ 𝑒𝑗𝑗 𝐴 + 𝛼 = 𝛼 
• Use lemma to eliminate cycles ∎ 
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EF cake cutting, revisited 

• Want to get 𝜖-EF cake division 
• Agent 𝑖 makes 1 𝜖⁄  marks 𝑥1𝑖 , … , 𝑥1 𝜖⁄

𝑖  such 
that for every 𝑘,  𝑉𝑖 𝑥𝑘𝑖 , 𝑥𝑘+1𝑖 = 𝜖 

• If intervals between consecutive marks are 
indivisible goods then 𝛼 ≤ 𝜖 

• Now we can apply the theorem 
• Need 𝑛/𝜖 cut queries and 𝑛2/𝜖 eval 

queries 
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An even simpler solution 

• Relies on additive valuations 
• Create the “indivisible goods” like before 
• Agents choose pieces in a round-robin 

fashion: 1, … ,𝑛, 1, … ,𝑛, … 
• Each good chosen by agent 𝑖 is preferred 

to the next good chosen by agent 𝑗 
• This may not account for the first good 𝑔 

chosen by 𝑗, but 𝑉𝑖 𝑔 ≤ 𝜖 
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Maximin share guarantee 

• Let us focus on indivisible goods and 
additive valuations  

• Communication complexity is not an issue 
• But computational complexity is 
• Observation: Deciding whether there exists 

an EF allocation is NP-hard, even for two 
players with identical valuations 
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Total:  
$30 
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• Maximin share (MMS) guarantee [Budish, 
2011] of player 𝑖: 

max
𝑋1,…,𝑋𝑛

min
𝑗
𝑉𝑖(𝑋𝑗) 

• Theorem [P & Wang, 2014]: ∀𝑛 ≥ 3 there 
exist additive valuation functions that do 
not admit an MMS allocation 
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Counterexample for 𝑛 = 3 
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Counterexample for 𝑛 = 3 
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• Maximin share (MMS) guarantee [Budish, 
2011] of player 𝑖: 

max
𝑋1,…,𝑋𝑛

min
𝑗
𝑉𝑖(𝑋𝑗) 

• Theorem [P & Wang, 2014]: ∀𝑛 ≥ 3 there 
exist additive valuation functions that do 
not admit an MMS allocation 

• Theorem [P & Wang, 2014]: It is always 
possible to guarantee each player 2/3 of 
his MMS guarantee 
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