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Strategyproof Cake cutting 

• We discussed strategyproofness (SP) in voting 
• All the cake cutting algorithms we discussed are 

not SP: agents can gain from manipulation 
o Cut and choose: player 1 can manipulate 
o Dubins-Spanier: shout later 

• Assumption: agents report full valuations 
• Deterministic EF and SP algs exist in some 

special cases, but they are rather involved [Chen 
et al. 2010] 
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A randomized algorithm 
• 𝑋1, … ,𝑋𝑛 is a perfect partition if 𝑉𝑖 𝑋𝑗 = 1 𝑛⁄  for all 𝑖, 𝑗 
• Algorithm  

o Compute a perfect partition 
o Draw a random permutation 𝜋 over {1, … ,𝑛} 
o Allocate to agent 𝑖 the piece 𝑋𝜋 𝑖  

• Theorem [Chen et al. 2010; Mossel and Tamuz 2010]: the 
algorithm is SP in expectation and always produces an 
EF allocation 

• Proof: if an agent lies the algorithm may compute a 
different partition, but for any partition: 

�
1
𝑛
𝑉𝑖 𝑋𝑗′ =

1
𝑛
�𝑉𝑖 𝑋𝑗′ =

1
𝑛

  ∎
𝑗∈𝑁𝑗∈𝑁
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Computing a perfect partition 

• Theorem [Alon, 1986]: a 
perfect partition always 
exists, needs 
polynomially many cuts 

• Proof is nonconstructive 
• Can find perfect 

partitions for special 
valuation functions 
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A true story 

• In 2001 I moved into an apartment in Jerusalem 
with Naomi and Nir 

• One larger bedroom, two smaller bedrooms 
• Naomi and I searched for the apartment, Nir 

was having fun in South America 
• Nir’s argument: I should have the large room 

because I had no say in choosing apartment 
o Made sense at the time! 

• How to fairly divide the rent? 
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Sperner’s Lemma 
• Triangle 𝑇 partitioned into 

elementary triangles 
• Label vertices by {1,2,3} using 

Sperner labeling: 
o Main vertices are different 
o Label of vertex on an edge 

(𝑖, 𝑗) of 𝑇 is 𝑖 or 𝑗 
• Lemma: Any Sperner  

labeling contains at least one 
fully labeled elementary 
triangle 
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Proof of Lemma 

• Doors are 12 edges 
• Rooms are elementary 

triangles 
• #doors on the boundary 

of 𝑇 is odd 
• Every room has ≤ 2 

doors; one door iff the 
room is 123 
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Proof of Lemma 
• Start at door on boundary 

and walk through it 
• Room is fully labeled or it 

has another door... 
• No room visited twice 
• Eventually walk into fully 

labeled room or back to 
boundary 

• But #doors on boundary is 
odd ∎ 
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Fair rent division 
• Assume there are three housemates  

A, B, C 
• Goal is to divide rent so that each person 

wants different room 
• Sum of prices for three rooms is 1 
• Can represent possible partitions as 

triangle 
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Fair rent division 

• “Triangulate” and assign “ownership” of 
each vertex to each of A, B, and C ... 

• ... in a way that each elementary triangle 
is an ABC triangle 

11 



15896 Spring 2015: Lecture 11 12 

A C B C A B 

B C A B C 

A B C A 

C A B 

B C 

A 



15896 Spring 2015: Lecture 11 

Fair rent division 

• Ask the owner of each vertex to tell us 
which room he prefers 

• This gives a new labeling by 1, 2, 3 
• Assume that a person wants a free room if 

one is offered to him 
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• Choice of rooms on edges is constrained by 
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• Sperner’s lemma (variant): such a labeling 
must have a 123 triangle 
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Fair rent division 

• Such a triangle is nothing but an 
approximately envy free allocation! 

• By making the triangulation finer, we can 
increase accuracy 

• In the limit we obtain a completely envy 
free allocation 

• Same techniques generalize to more 
housemates [Su 1999] 
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Computational resources 

• Setting: allocating multiple homogeneous 
resources to agents with different requirements 

• Running example: shared cluster 
• Assumption: agents have proportional demands 

for their resources (Leontief preferences) 
• Example:  

o Agent has requirement (2 CPU,1 RAM) for each 
copy of task 

o Indifferent between allocations (4,2) and (5,2) 
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Model 

• Set of players 𝑁 = {1, … ,𝑛} and set of 
resources 𝑅, 𝑅 = 𝑚 

• Demand of player 𝑖 is 𝒅𝑖 = 𝑑𝑖𝑖, … ,𝑑𝑖𝑖 , 
0 < 𝑑𝑖𝑖 ≤ 1; ∃𝑟 s.t. 𝑑𝑖𝑖 = 1 

• Allocation 𝑨𝑖 = 𝐴𝑖𝑖, … ,𝐴𝑖𝑖  where 𝐴𝑖𝑖 is 
the fraction of 𝑟 allocated to 𝑖 

• Preferences induced by the utility function 
𝑢𝑖 𝑨𝑖 = min𝑟∈𝑅 𝐴𝑖𝑖/𝑑𝑖𝑖 
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Dominant resource fairness 

• Dominant resource of 𝑖 = 𝑟 s.t. 𝑑𝑖𝑖 = 1 
• Dominant share of 𝑖 = 𝐴𝑖𝑖 for dominant 𝑟 
• Mechanism: allocate proportionally to 

demands and equalize dominant shares 
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Formally... 
• DRF finds 𝑥 and allocates to 𝑖 an 𝑥𝑑𝑖𝑖 

fraction of resource r: 

max 𝑥 s.t. ∀𝑟 ∈ 𝑅,�𝑥 ⋅ 𝑑𝑖𝑖 ≤ 1
𝑖∈𝑁

 

• Equivalently, 𝑥 = 1
max𝑟∈𝑅 ∑ 𝑑𝑖𝑖𝑖∈𝑁

 

• Example: 𝑑11 = 1
2

;𝑑12 = 1;𝑑21 = 1;𝑑22 = 1
6
 

then 𝑥 = 1
1
2+1

= 2
3
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Axiomatic properties 

• Pareto optimality (PO) 
• Envy-freeness (EF) 
• Proportionality (a.k.a. sharing incentives, 

individual rationality): 

∀𝑖 ∈ 𝑁,𝑢𝑖 𝑨𝑖 ≥ 𝑢𝑖
1
𝑛

, … ,
1
𝑛

 

• Strategyproofness (SP) 
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Properties of DRF 

• An allocation 𝑨𝑖 is non-wasteful if ∃𝑥 s.t. 
𝐴𝑖𝑖 = 𝑥𝑑𝑖𝑖 for all 𝑟 

• If 𝑨𝑖 is non-wasteful and 𝑢𝑖 𝑨𝑖 < 𝑢𝑖 𝑨𝑖′  
then 𝐴𝑖𝑖 < 𝐴𝑖𝑖′  for all 𝑟 

• Theorem [Ghodsi et al. 2011]: DRF is PO, 
EF, proportional, and SP 
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Proof of theorem 

• PO: obvious 
• EF:  

o Let 𝑟 be the dominant resource of 𝑖 
o 𝐴𝑖𝑖 = 𝑥 ⋅ 𝑑𝑖𝑖 = 𝑥 ≥ 𝑥 ⋅ 𝑑𝑗𝑗 = 𝐴𝑗𝑗 

• Proportionality: 
o For every 𝑟, ∑ 𝑑𝑖𝑖 ≤ 𝑛𝑖∈𝑁  

o Therefore, 𝑥 = 1
max
𝑟

∑ 𝑑𝑖𝑖𝑖∈𝑁
≥ 1

𝑛
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Proof of theorem 
• Strategyproofness: 

o 𝑑𝑗𝑗′  are the manipulated demands; 𝑑𝑗𝑗′ = 𝑑𝑗𝑗 
for all 𝑗 ≠ 𝑖 

o Allocation is 𝐴𝑗𝑗′ = 𝑥′𝑑𝑗𝑗′  
o If 𝑥′ ≤ 𝑥, 𝑟 is the dominant resource of 𝑖, 

then 𝐴𝑖𝑖′ = 𝑥′𝑑𝑖𝑖′ ≤ 𝑥𝑑𝑖𝑖′ ≤ 𝑥𝑑𝑖𝑖 = 𝐴𝑖𝑖 
o If 𝑥′ > 𝑥, let 𝑟 be the resource saturated by 

𝑨 (∑ 𝑥𝑑𝑗𝑗 = 1)𝑗∈𝑁 , then 
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𝐴𝑖𝑖 = 1 −�𝐴𝑗𝑗
𝑗≠𝑖

= 1 −�𝑥𝑑𝑗𝑗 > 1 −�𝑥′𝑑𝑗𝑗 =
𝑗≠𝑖𝑗≠𝑖

1 −�𝐴𝑗𝑗′

𝑗≠𝑖

≥ 𝐴𝑖𝑖′  
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