

Game Theory IV: Complexity of Finding a Nash

Equilibrium

Teachers: Ariel Procaccia and Alex Psomas (this time)

COMPUTING A NASH EQUILIBRIUM

Who cares??

If centralized, specially designed algorithms cannot find Nash equilibria, why should we expect distributed, selfish agents to naturally converge to one?

THE PROBLEM

• NASH

- Input:
 - Number of player *n*.
 - An enumeration of the strategy set S_p for every player p.
 - The utility function u_p for every player.
 - An approximation requirement ϵ .
- Output: Compute an ϵ Nash equilibrium
 - Every action that is played with positive probability is an ϵ maximizer (given the other players' strategies)
- Approximation is necessary!
 - There are games with unique irrational equilibria

HOW HARD IS IT TO COMPUTE AN EQUILIBRIUM

- NP-hard perhaps?
- What would a reduction look like?
- Typical reduction: 3SAT to Hamilton cycle
 Take an instance *I* of 3SAT
 - Create an instance *I*' of HC
 - If *I*' has a Hamiltonian cycle, find a satisfying assignment for *I*
 - If *I*' doesn't have Hamiltonian cycle, conclude that there is no satisfying assignment for *I*

HOW HARD IS IT TO COMPUTE AN EQUILIBRIUM

- 3SAT to NASH?
 - Take an instance *I* of 3SAT
 - Create an instance I' of NASH
 - If I' has a MNE, find a satisfying assignment for I
 - If I' doesn't have a MNE, conclude that there is no satisfying assignment for I
- All games have a Mixed Nash Equilibrium!

HOW HARD IS IT TO COMPUTE AN EQUILIBRIUM

- What about Pure Nash?
 - Those don't always exist!
 - NP-hard! [Conitzer, Sandholm 2002]
- What about MNE with "social welfare at least *x*"?
 - NP-hard! [Conitzer, Sandholm 2002]
- What about just MNE?
 - Can't be NP-hard...
 - Doesn't seem to be in P either...
 - Where is it??

WHICH COMPLEXITY CLASS

NP

WHICH COMPLEXITY CLASS

WHICH COMPLEXITY CLASS

INCIDENTALLY

PPAD

- PPAD: Polynomial Parity Arguments on Directed graphs [Papadimitriou 1994]
- Input: A graph where each vertex has at most in- and out- degree at most 1. A source *u*.
- Goal: Find a sink or a different source!

PPAD

- Why not search the whole graph?
- Graph size is exponential!
- EndOfALine: Given two circuits *S* and *P*, with *m* input bits and *m* output bits each, such that $P(0^m) = 0^m \neq S(0^m)$, find an input $x \in \{0,1\}^m$ such that $P(S(x)) \neq x$ or $S(P(x)) \neq x \neq 0^m$.
- PPAD the set of problems reducible to EndOfALine.

WHAT DOES MNE HAVE TO DO WITH ALL THIS?

- Nash's proof that every finite game has a MNE uses a fixed point theorem argument, Brouwer's fixed point theorem.
- The proof of Brouwer's fixed point theorem uses **Sperner's** Lemma.
- The proof of Sperner's Lemma is at its heart an exponential time path-following algorithm!

SPERNER'S LEMMA

SPERNER'S LEMMA

- 2D Sperner:
 - Input: The description of a poly-time Turing machine f that gives a valid coloring. $f(p) \in \{0, 1, 2\}$, where p is a node.
 - Output: A trichromatic triangle
- 2D-Sperner \in PPAD
 - Obvious reduction.
- 2D-Sperner is PPAD-complete [CD 2006]

SPERNER'S LEMMA

- 2D Sperner:
 - Input: The description of a poly-time Turing machine f that gives a valid coloring. $f(p) \in \{0, 1, 2\}$, where p is a node.
 - Output: A trichromatic triangle
- 2D-Sperner \in PPAD
 - Obvious reduction.
- 2D-Sperner is PPAD-complete [CD 2006]

BROUWER'S FIXED POINT THEOREM

- Thm: Every continuous function f from a closed, convex and compact set C to itself has a fixed point, i.e. a point x_0 such that $f(x_0) = x_0$
- Proof (for $C = [0,1]^2$)
 - Subdivide *C* into tiny triangles
 - Color the edges like before.
 - For the internal nodes $x = (x_1, x_2)$:
 - If $f_2(x) \ge x_2$, color x with color 1
 - If $f_1(x) \ge x_1$, color x with color 2
 - If $f_1(x) \le x_1$ and $f_2(x) \le x_2$, color x with color 3
 - If more than 1 condition is met, pick an arbitrary color

BROUWER'S FIXED POINT THEOREM

- Color 1 = f(x) farther from bottom than x
- Color 2 = f(x) farther from left side than x
- Color 3 = f(x) farther from top and right side than x
- Trichromatic triangle (in the limit) = f(x) farther from all sides than x = x is a fixed point!

BROUWER'S FIXED POINT THEOREM

- The fixed point could be irrational!
 - We need approximation!
- Brouwer computational problem
 - Input: An algorithm that evaluates a continuous function *f* from [0,1]ⁿ to [0,1]ⁿ. An approximation *ε*. A Lipschitz constant *c* that *f* is claimed to satisfy.
 - Output: x such that $|f(x) x| < \epsilon$, or a violation of the assumptions
 - A(x) outside $[0,1]^n$, or |f(x) f(y)| > c|x y|
- Brouwer is PPAD-complete [DGP 05]

STORY SO FAR

THE ACTUAL STORY

BROUWER \rightarrow NASH?

• NASH

- Input: Number of player *n*. An enumeration of the strategy set S_p for every player *p*. The utility function u_p for every player. An approximation requirement ϵ .
- Output: Compute an ϵ Nash equilibrium
 - Every action that is played with positive probability is an *ε* maximizer (given the other players' strategies)
- Approximation is necessary!
 - There are games with unique irrational equilibria

BROUWER →NASH?

- Alice picks $x \in [0,1]^n$. Bob picks $y \in [0,1]^n$.
- $U_A(x,y) = -||x-y||_2^2$
- $U_B(x,y) = -||f(x) y||_2^2$
- Claim: Equilibrium strategies must be pure.
- The only pure equilibrium is x = y = f(x).
 Why?
- Done???

POLL

Poll

What's the problem with this reduction?

- 1. Too many
strategies!3. Those games are
easy!
- 2. Wrong direction! 4. Beats me!

BROUWER \rightarrow NASH?

- The computational versions of Brouwer and Sperner, as well as EndOfALine, are defined in terms of explicit circuits.
- These need to somehow be simulated in the target problem, NASH, which has no explicit circuits in its description!
- Other problems (say HC) don't have circuits either, but at least are combinatorial, which is not the case here either...

BROUWER →MULTIPLAYER NASH

- Players are nodes in a graph
- A player's payoff is only affected by her own strategy and the strategies of her neighbors

THE WHOLE STORY

- Exponential approximation is PPAD complete for 3 players [DGP 06]
- Polynomial approximation is PPAD complete for 2 player NASH [CDT 06]
- Constant approximation is PPAD complete for *n* players [Rubinstein 15]
- Quasi-polynomial time algorithm for *ε* approximation for 2 player [LMM 03]
- Assuming ETH for PPAD, ϵ approximation takes time $2^{\Omega(n)}$ [Rubinstein 16]

REFERENCES

- Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. 2009. The complexity of computing a Nash equilibrium. Commun. ACM
- Chen, X., Deng, X., and Teng, S.-H. 2009. Settling the complexity of computing two-player Nash equilibria. J. ACM
- Rubinstein, A. Inapproximability of Nash equilibrium. STOC 2015
- Rubinstein, A. Settling the Complexity of Computing Approximate Two-Player Nash Equilibria. FOCS 2016
- Lipton, R. J., Markakis, E., and Mehta, A. Playing large games using simple strategies. EC 2003