

Game Theory IV:
 Complexity of Finding a Nash
 Equilibrium

Teachers: Ariel Procaccia and Alex Psomas (this time)

COMPUTING A NASH EQUILIBRIUM

Who cares??

If centralized, specially designed algorithms cannot find Nash equilibria, why should we expect distributed, selfish agents to naturally converge to one?

THE PROBLEM

- NASH
- Input:
- Number of player n.
- An enumeration of the strategy set S_{p} for every player p.
- The utility function u_{p} for every player.
- An approximation requirement ϵ.
- Output: Compute an ϵ Nash equilibrium
- Every action that is played with positive probability is an ϵ maximizer (given the other players' strategies)
- Approximation is necessary!
- There are games with unique irrational equilibria

HOW HARD IS IT TO COMPUTE AN EQUILIBRIUM

- NP-hard perhaps?
- What would a reduction look like?
- Typical reduction: 3SAT to Hamilton cycle
- Take an instance I of 3SAT
- Create an instance I^{\prime} of HC
- If I^{\prime} has a Hamiltonian cycle, find a satisfying assignment for I
- If I^{\prime} doesn't have Hamiltonian cycle, conclude that there is no satisfying assignment for I

HOW HARD IS IT TO COMPUTE AN EQUILIBRIUM

- 3SAT to NASH?
- Take an instance I of 3SAT
- Create an instance I^{\prime} of NASH
- If I^{\prime} has a MNE, find a satisfying assignment for I
- If I^{\prime} doesn't have a MNE, conclude that there is no satisfying assignment for I
- All games have a Mixed Nash Equilibrium!

HOW HARD IS IT TO COMPUTE AN EQUILIBRIUM

- What about Pure Nash?
- Those don't always exist!
- NP-hard! [Conitzer, Sandholm 2002]
- What about MNE with "social welfare at least x "?
- NP-hard! [Conitzer, Sandholm 2002]
- What about just MNE?
- Can't be NP-hard...
- Doesn't seem to be in P either...
- Where is it??

WHICH COMPLEXITY CLASS

NP

WHICH COMPLEXITY CLASS

WHICH COMPLEXITY CLASS

WHICH COMPLEXITY CLASS

INCIDENTALLY

PPAD

- PPAD: Polynomial Parity Arguments on Directed graphs [Papadimitriou 1994]
- Input: A graph where each vertex has at most in- and out- degree at most 1 . A source u.
- Goal: Find a sink or a different source!

PPAD

- Why not search the whole graph?
- Graph size is exponential!
- EndOfALine: Given two circuits S and P, with m input bits and m output bits each, such that $P\left(0^{m}\right)=0^{m} \neq S\left(0^{m}\right)$, find an input $x \in\{0,1\}^{m}$ such that $P(S(x)) \neq \mathrm{x}$ or $S(P(x)) \neq x \neq 0^{m}$.
- PPAD the set of problems reducible to EndOfALine.

WHAT DOES MNE HAVE TO DO WITH ALL THIS?

- Nash's proof that every finite game has a MNE uses a fixed point theorem argument, Brouwer's fixed point theorem.
- The proof of Brouwer's fixed point theorem uses Sperner's Lemma.
- The proof of Sperner's Lemma is at its heart an exponential time path-following algorithm!

SPERNER'S LEMMA

SPERNER'S LEMMA

- 2D Sperner:
- Input: The description of a poly-time Turing machine f that gives a valid coloring. $f(p) \in\{0,1,2\}$, where p is a node.
- Output: A trichromatic triangle
- 2D-Sperner \in PPAD
- Obvious reduction.
- 2D-Sperner is PPAD-complete [CD 2006]

SPERNER'S LEMMA

- 2D Sperner:
- Input: The description of a poly-time Turing machine f that gives a valid coloring. $f(p) \in\{0,1,2\}$, where p is a node.
- Output: A trichromatic triangle
- 2D-Sperner \in PPAD
- Obvious reduction.
- 2D-Sperner is PPAD-complete [CD 2006]

BROUWER'S FIXED POINT THEOREM

- Thm: Every continuous function f from a closed, convex and compact set C to itself has a fixed point, i.e. a point x_{0} such that $f\left(x_{0}\right)=x_{0}$
- Proof (for $C=[0,1]^{2}$)
- Subdivide C into tiny triangles
- Color the edges like before.
- For the internal nodes $x=\left(x_{1}, x_{2}\right)$:
- If $f_{2}(x) \geq x_{2}$, color x with color 1
- If $f_{1}(x) \geq x_{1}$, color x with color 2
- If $f_{1}(x) \leq x_{1}$ and $f_{2}(x) \leq x_{2}$, color x with color 3
- If more than 1 condition is met, pick an arbitrary color

BROUWER'S FIXED POINT THEOREM

Color 3

- Color $1=f(x)$ farther from bottom than x
- Color $2=f(x)$ farther from left side than x
- Color $3=f(x)$ farther from top and right side than x
- Trichromatic triangle (in the limit) $=f(x)$ farther from all sides than $x=x$ is a fixed point!

BROUWER'S FIXED POINT THEOREM

- The fixed point could be irrational!
- We need approximation!
- Brouwer computational problem
- Input: An algorithm that evaluates a continuous function f from $[0,1]^{n}$ to $[0,1]^{n}$. An approximation ϵ. A Lipschitz constant c that f is claimed to satisfy.
- Output: x such that $|f(x)-x|<\epsilon$, or a violation of the assumptions
- $A(x)$ outside $[0,1]^{n}$, or $|f(x)-f(y)|>c|x-y|$
- Brouwer is PPAD-complete [DGP 05]

STORY SO FAR

EndOfALine \longleftrightarrow Sperner

THE ACTUAL STORY

EndOfALine $\xrightarrow{[\mathrm{DGP} 05]}$ 3D-EndOfALine

3D-Sperner $\underset{[\text { DGP 05] }}{\longrightarrow}$ 3D-Brouwer

BROUWER \rightarrow NASH?

- NASH
- Input: Number of player n. An enumeration of the strategy set S_{p} for every player p. The utility function u_{p} for every player. An approximation requirement ϵ.
- Output: Compute an ϵ Nash equilibrium
- Every action that is played with positive probability is an ϵ maximizer (given the other players' strategies)
- Approximation is necessary!
- There are games with unique irrational equilibria

BROUWER \rightarrow NASH?

- Alice picks $x \in[0,1]^{n}$. Bob picks $y \in[0,1]^{n}$.
- $U_{A}(x, y)=-\|x-y\|_{2}^{2}$
- $U_{B}(x, y)=-\|f(x)-y\|_{2}^{2}$
- Claim: Equilibrium strategies must be pure.
- The only pure equilibrium is $x=y=f(x)$. - Why?
- Done???

POLL

Poll

What's the problem with this reduction?

1. Too many strategies!
2. Those games are easy!
3. Wrong direction! 4. Beats me!

BROUWER \rightarrow NASH?

- The computational versions of Brouwer and Sperner, as well as EndOfALine, are defined in terms of explicit circuits.
- These need to somehow be simulated in the target problem, NASH, which has no explicit circuits in its description!
- Other problems (say HC) don't have circuits either, but at least are combinatorial, which is not the case here either...

BROUWER \rightarrow MULTIPLAYER NASH

- Players are nodes in a graph
- A player's payoff is only affected by her own strategy and the strategies of her neighbors

THE WHOLE STORY

- Exponential approximation is PPAD complete for 3 players [DGP 06]
- Polynomial approximation is PPAD complete for 2 player NASH [CDT 06]
- Constant approximation is PPAD complete for n players [Rubinstein 15]
- Quasi-polynomial time algorithm for ϵ approximation for 2 player [LMM 03]
- Assuming ETH for PPAD, ϵ approximation takes time $2^{\Omega(n)}$ [Rubinstein 16]

REFERENCES

- Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. 2009. The complexity of computing a Nash equilibrium. Commun. ACM
- Chen, X., Deng, X., and Teng, S.-H. 2009. Settling the complexity of computing two-player Nash equilibria. J. ACM
- Rubinstein, A. Inapproximability of Nash equilibrium. STOC 2015
- Rubinstein, A. Settling the Complexity of Computing Approximate Two-Player Nash Equilibria. FOCS 2016
- Lipton, R. J., Markakis, E., and Mehta, A. Playing large games using simple strategies. EC 2003

