

Game Theory III: Positive Results

Teachers: Ariel Procaccia and Alex Psomas (this time)

TODAY

- Zero-sum games
- QPTAS for two players
- Exact equilibrium in exponential time for two players

ZERO SUM GAMES

- Basic definitions
- Input: $m \times n$ matrix A
- $A_{i, j}$ is the gain of the row player (and the loss of the column player) when the row player picks pure strategy i and the column player picks pure strategy j
- Gain of row player for mixed strategies x, y equals $x^{T} A y=\sum_{i} \sum_{j} x_{i} A_{i, j} y_{j}$
- Output: an equilibrium x, y

PURE STRATEGIES

- When the row player picks a pure strategy i, the utility she should expect is $\min _{j} A_{i, j}$
- So, by picking pure strategies she shouldn't be able to make more than $\max _{i} \min _{j} A_{i, j}$
- $\max _{i} \min _{j} A_{i, j} \leq \min _{j} \max _{i} A_{i, j}$
- Why?

POLL

$\max _{i} \min _{j} A_{i, j} \leq \min _{j} \max _{i} A_{i, j}$

Poll X
Can this inequality be strict?

1. Yes
2. Beats me!
3. No

MIXED STRATEGIES

- When the row player picks a mixed strategy x, the utility she should expect is $\min _{y} x^{T} A y$ y
- So, by picking mixed strategies she shouldn't be able to make more than $\max _{x} \min _{y} x^{T} A y$
- Similarly, column player shouldn't lose more than $\min _{y} \max x^{T} A y$

$$
y \quad x
$$

MINMAX THEOREM

- Theorem (Von Neumann): For every two player zero-sum game there is a value V called the value of the game such that $\max _{x} \min _{y} x^{T} A y=V=\min _{y} \max _{x} x^{T} A y$

COMPUTING AN OPTIMAL STRATEGY

- Example

3	-1
-2	1

- When row picks a mixed strategy $x=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ her utility is

$$
\mathrm{z}=\min \left(3 x_{1}-2 x_{2},-x_{1}+x_{2}\right)
$$

- Should we consider mixed strategies for column?
- When column picks y loss is

$$
w=\max \left(3 y_{1}-y_{2},-2 y_{1}+y_{2}\right)
$$

- Maximize z, with the constraint $x_{1}+x_{2} \leq 1$!
- Issues?

TWO OPTIMAL STRATEGIES

- max z
- $z \leq 3 x_{1}-2 x_{2}$
- $z \leq-x_{1}+x_{2}$
- $x_{1}+x_{2}=1$
- $x_{1}, x_{2} \geq 0$
- min w
- $w \geq 3 y_{1}-y_{2}$
- $w \geq-2 y_{1}+y_{2}$
- $y_{1}+y_{2}=1$
- $y_{1}, y_{2} \geq 0$

DUALS!!!!!!

GENERAL PROOF

- The optimization problem for the row player is
- max z,
- $z \leq \sum_{i} x_{i} A_{i, j}, \forall j$
- $\sum_{i} x_{i}=1$
- The optimization problem for the column player is its dual!
- By strong duality we get than $z^{*}=w^{*}$, or
- $\max _{x} \min _{j} x^{T} A_{(,, j)}=\min _{y} \max _{i} A_{(i, .)} y$
- $\min _{j} x^{T} A_{(., j)}=\min _{y} x^{T} A y$
- $\max _{i} A_{(i, r)} y=\max _{x} x A y$

є APPROXIMATION: NON-ZERO SUM TWO PLAYER GAMES

- Input: Two n by n matrices, A and B, for the payoffs of player 1 and player 2.
- Assume that payoffs are in $[0,1]$
- Dfn: An $\epsilon-N E(x, y)$ satisfies $x^{T} A y \geq$ $\max _{i} A_{i} y-\epsilon$, and $y^{T} B x \geq \max _{i} B_{i} x-\epsilon$.
- Goal: Find $\epsilon-N E$ in time $O\left(n^{\frac{\log n}{\epsilon^{2}}}\right)$
- Lemma [LMM 03]:
- There exists an $\epsilon-N E$ where each player uses a strategy that uniformly samples from a multiset (of pure strategies) of size $O\left(\log n / \epsilon^{2}\right)$.

є APPROXIMATION: NON-ZERO SUM TWO PLAYER GAMES

Proof:

- A NE (x, y) does exist.
- Thought experiment: Sample k times from x and y (with repetition)
- We view x and y as distributions
- $X=$ multiset of pure strategies after sampling from x
- Y similarly
- $x_{i}^{*}=(\#$ times pure strategy i appears in $X) / k$
- $y_{i}^{*}=(\#$ times pure strategy i appears in $Y) / k$

ϵ APPROXIMATION: NON-ZERO SUM TWO PLAYER GAMES

- We want to pick k large enough so that $x^{*} A y^{*} \geq$ $\max _{i} A_{i} y^{*}-\epsilon$, and $\left(y^{*}\right)^{T} B x^{*} \geq \max _{i} B_{i} x^{*}-\epsilon$
- It suffices if all of the following to hold:

1. $\left|A_{i} y-A_{i} y^{*}\right| \leq \epsilon / 3$, for all i
2. $\left|B_{j} x-B_{j} x^{*}\right| \leq \epsilon / 3$, for all j
3. $\left|x A y-x^{*} A y\right| \leq \epsilon / 3$
4. $\left|y^{T} B x-\left(y^{*}\right)^{T} B x\right| \leq \epsilon / 3$

- $x^{*} A y^{*} \geq x^{*} A y-\epsilon / 3 \geq x A y-2 \epsilon / 3 \geq$ $\max _{i} A_{i} y-2 \epsilon / 3 \geq \max _{i} A_{i} y^{*}-\epsilon$
- Similarly, $\left(y^{*}\right)^{T} B x^{*} \geq \max _{i} B_{i} x^{*}-\epsilon$

є APPROXIMATION: NON-ZERO SUM TWO PLAYER GAMES

- How big should k be?
- Let's first try to bound $\operatorname{Pr}\left[\left|A_{i} y^{*}-A_{i} y\right| \geq \epsilon\right]$
- $y_{j}^{*}=\frac{1}{k} \sum_{\ell=1}^{k} \mathbb{1}\{\ell-$ th sample $=j\}$
- $\mathbb{E}\left[y_{j}^{*}\right]=y_{j}$
- $\operatorname{Pr}\left[\left|y_{j}^{*}-y_{j}\right| \geq \epsilon\right] \leq e^{-2 k \epsilon^{2}}$
- Pick $k=\frac{\log \mathrm{n}}{\epsilon^{2}}: \operatorname{Pr}\left[\left|y_{j}^{*}-y_{j}\right| \geq \epsilon\right] \leq \frac{1}{n^{2}}$
- So, $\operatorname{Pr}\left[\left|A_{i j} y_{j}^{*}-A_{i j} y_{j}\right| \geq \epsilon\right] \leq \frac{1}{n^{2}}$
- By union bound $\operatorname{Pr}\left[\left|A_{i} y^{*}-A_{i} y\right| \geq \epsilon\right] \leq \frac{1}{n}$
- Similarly for everything else (plus union bound)

є APPROXIMATION: NON-ZERO SUM TWO PLAYER GAMES

- What have we done so far...
- Sampling $k=O\left(\frac{\operatorname{logn}}{\epsilon^{2}}\right)$ times from a NE gives an $\epsilon-N E\left(x^{*}, y^{*}\right)$
- So what?? We don't know the distribution we're supposed to sample from
- Every probability in x^{*} and y^{*} is a multiple of $\frac{1}{k}$
- How many such x^{*} exist?

$$
\circ\binom{n+k-1}{n-1} \approx n^{k}=n^{\frac{\log n}{\epsilon^{2}}}
$$

- Try all of them!

EXACT EQUILIBRIA FOR 2 PLAYERS: LEMKE-HOWSON

- Focus on symmetric n by n games $B=A$
- Those have symmetric equilibria
- Consider the following polytope

$$
\begin{gathered}
\sum_{j=1}^{n} A_{i, j} x_{j} \leq 1, \text { for all } i \\
x_{j} \geq 0, \text { for all } j
\end{gathered}
$$

- $2 n$ inequalities, n dimensions
- A strategy i is "represented" at a corner x if at least one of the following holds: (1) $x_{i}=$ 0 , (2) $A_{i} x=1$

LEMKE-HOWSON

- Lemma: If every strategy is represented at some corner x (expect the origin), then $\left(\frac{x}{|x|_{1}}, \frac{x}{|x|_{1}}\right)$ a NE.
Proof:

1. $x_{i}=0 \rightarrow i$ is not played
2. $x_{i}>0 \rightarrow A_{i} x=1 \rightarrow A_{i} x \geq A_{j} x$ for all j (recall the constraints of the polytope)

$$
\rightarrow e_{i}^{T} A \frac{x}{|x|_{1}} \geq e_{j}^{T} A \frac{x}{|x|_{1}} \text { for all } j
$$

i is either not played or is a best response to $\frac{x}{|x|_{1}}$.

LEMKE-HOWSON

- Start at the origin
- Assuming non-degeneracy there are n adjacent corners.
- Pick a constraint to untighten, say $x_{1}=0$
- Keep all other constraints tight and pivot until one of the $A_{j} x \leq 1$ constraint hits
- If not at NE, there must be a strategy that is "represented" by two constraints
- This gives two neighbors (by relaxing each of the two constraints), one of them is the previous corner
- Go to the other one
- Repeat
- At most $\binom{2 n}{n}$ vertices, so this will terminate (in exponential time)
- Just need to prove that we don't go in circles

LEMKE-HOWSON

