

TRUTH JUSTICE ALGOS

Game Theory II: Price of Anarchy

Teachers: Ariel Procaccia (this time) and Alex Psomas

BACK TO PRISON

- The only Nash equilibrium in Prisoner's dilemma is bad; but how bad is it?
- **Objective function:** social cost = sum of costs
- NE is six times worse than the optimum
- We can make this arbitrarily bad

-1,-1	-9,0
0,-9	-6,-6

ANARCHY AND STABILITY

- Fix a class of games, an objective function, and an equilibrium concept
- The price of anarchy (stability) is the worstcase ratio between the worst (best) objective function value of an equilibrium of the game, and that of the optimal solution
- In this lecture:
 - Objective function = social cost
 - Equilibrium concept = Nash equilibrium

- *n* players in weighted directed graph
 G
- Player *i* wants to get from s_i to t_i ; strategy space is $s_i \rightarrow t_i$ paths
- Each edge e has cost c_e
- Cost of edge is split between all players using edge
- Cost of player is sum of costs over edges on path

- With *n* players, the example on the right has a NE with social cost *n*
- Optimal social cost is 1
- It follows that the price of anarchy of cost sharing games is at least *n*
- It is easy to see that the price of anarchy of cost sharing games is at most n — why?

- Think of the 1 edges as cars, and the *k* edge as mass transit
- Bad Nash equilibrium with cost
 n
- Good Nash equilibrium with cost k
- Now let's modify the example...

- OPT = k + 1
- Only equilibrium has cost
 k · H(n)
- Therefore, the price of stability of cost sharing games is at least Ω(log n)
- We will show that the price of stability is Θ(log n)

POTENTIAL GAMES

- A game is an exact potential game if there exists a function $\Phi: \prod_{i=1}^{n} S_i \to \mathbb{R}$ such that for all $i \in N$, for all $s \in \prod_{i=1}^{n} S_i$, and for all $s'_i \in S_i$, $\operatorname{cost}_i(s'_i, s_{-i}) - \operatorname{cost}_i(s) = \Phi(s'_i, s_{-i}) - \Phi(s)$
- The existence of an exact potential function implies the existence of a pure Nash equilibrium — why?

POTENTIAL GAMES

- Theorem: the cost sharing game is an exact potential game
- Proof:
 - Let $n_e(s)$ be the number of players using e under s
 - Define the potential function

$$\Phi(\mathbf{s}) = \sum_{e} \sum_{k=1}^{n_e(\mathbf{s})} \frac{c_e}{k}$$

• If player changes paths, pays $\frac{c_e}{n_e(s)+1}$ for each new edge, gets $\frac{c_e}{n_e(s)}$ for each old edge, so $\Delta \text{cost}_i = \Delta \Phi$

POTENTIAL GAMES

- Theorem: The cost of stability of cost sharing games is $O(\log n)$
- Proof:
 - It holds that $cost(s) \le \Phi(s) \le H(n) \cdot cost(s)$
 - $\circ~$ Take a strategy profile ${\it s}$ that minimizes Φ
 - *s* is an NE
 - $\operatorname{cost}(s) \le \Phi(s) \le \Phi(\operatorname{OPT}) \le H(n) \cdot \operatorname{cost}(\operatorname{OPT}) \blacksquare$

COST SHARING SUMMARY

- Upper bounds: ∀cost sharing game,
 PoA: ∀NE s, cost(s) ≤ n · cost(OPT)
 - **PoS:** $\exists NE s \text{ s.t.}$ $\operatorname{cost}(s) \leq H(n) \cdot \operatorname{cost}(OPT)$
- Lower bounds: $\exists cost sharing game s.t.$
 - **PoA:** $\exists NE s \text{ s.t.}$ $\operatorname{cost}(s) \ge n \cdot \operatorname{cost}(OPT)$

• **PoS:** \forall NE s, $cost(s) \ge H(n) \cdot cost(OPT)$

NETWORK FORMATION GAMES

- Each player is a vertex *v*
- Strategy of *v*: set of undirected edges to build that touch *v*
- Strategy profile *s* induces undirected graph
 G(*s*)
- Cost of building any edge is α
- $\operatorname{cost}_{v}(s) = \alpha n_{v}(s) + \sum_{u} d(u, v)$, where $n_{v} = \#$ edges bought by v, d is shortest path in #edges
- $\operatorname{cost}(\boldsymbol{s}) = \sum_{u \neq v} d(u, v) + \alpha |E|$

EXAMPLE: NETWORK FORMATION

NE with $\alpha = 3$

EXAMPLE: NETWORK FORMATION

- Lemma: If $\alpha \ge 2$ then any star is optimal, and if $\alpha \le 2$ then a complete graph is optimal
- Proof:
 - Suppose $\alpha \leq 2$, and consider any graph that is not complete
 - Adding an edge will decrease the sum of distances by at least 2, and costs only α
 - Suppose $\alpha \ge 2$ and the graph contains a star, so the diameter is at most 2; deleting a non-star edge increases the sum of distances by at most 2, and saves α

EXAMPLE: NETWORK FORMATION

Poll 1

For which values of α is any star a NE, and for which is any complete graph a NE? 1. $\alpha \ge 1, \alpha \le 1$ 3. $\alpha \ge 1$, none

2. $\alpha \ge 2, \alpha \le 1$ 4. $\alpha \ge 2$, none

• Theorem:

1. If $\alpha \ge 2$ or $\alpha \le 1$, PoS = 1 2. For $1 < \alpha < 2$, PoS $\le 4/3$

PROOF OF THEOREM

- Part 1 is immediate from the lemma and poll
- For $1 < \alpha < 2$, the star is a NE, while OPT is a complete graph
- Worst case ratio when $\alpha \to 1$: $\frac{2n(n-1) - 2(n-1) + (n-1)}{n(n-1) + n(n-1)/2}$ $= \frac{4n^2 - 6n + 2}{3n^2 - 3n} < \frac{4}{3}$

EXAMPLE: NETWORK CREATION

- Theorem [Fabrikant et al. 2003]: The price of anarcy of network creation games is $O(\sqrt{\alpha})$
- Lemma: If *s* is a Nash equilibrium that induces a graph of diameter *d*, then $cost(s) \le O(d) \cdot OPT$

- OPT = $\Omega(\alpha n + n^2)$
 - Buying a connected graph costs at least $(n-1)\alpha$
 - There are $\Omega(n^2)$ distances
- Distance costs $\leq dn^2 \Rightarrow$ focus on edge costs
- There are at most n 1 cut edges \Rightarrow focus on noncut edges

- Claim: Let e = (u, v) be a noncut edge, then the distance d(u, v) with e deleted $\leq 2d$
 - V_e = set of nodes s.t. the shortest path from u uses e
 - Figure shows shortest path avoiding e, e' = (u', v')is the edge on the path entering V_e
 - P_u is the shortest path from u to $u' \Rightarrow |P_u| \leq d$
 - ∘ $|P_v| \le d 1$ as $P_v \cup \{e\}$ is shortest path from u to v' ■

- Claim: There are O(nd/α) noncut edges paid for by any vertex u
 - Let e = (u, v) be an edge paid for by u
 - By previous claim, deleting *e* increases distances from *u* by at most $2d|V_e|$
 - ∘ *G* is an equilibrium $\Rightarrow \alpha \le 2d|V_e| \Rightarrow$ $|V_e| \ge \alpha/2d$
 - *n* vertices overall \Rightarrow can't be more than $2nd/\alpha$ sets V_e

- $O(nd/\alpha)$ noncut edges per vertex
- O(nd) total payment for these per vertex
- $O(n^2d)$ overall

PROOF OF THEOREM

- By lemma, it is enough to show that the diameter at a NE $\leq 2\sqrt{\alpha}$
- Suppose $d(u, v) \ge 2k$ for some k
- By adding the edge (u, v), u pays α and improves distance to second half of the u → v shortest path by

$$(2k - 1) + (2k - 3) + \dots + 1 = k^2$$

• If

$$\alpha < k^2 \le \left(\frac{d(u,v)}{2}\right)^2 \Rightarrow d(u,v) > 2\sqrt{\alpha}$$

then it is beneficial to add edge — contradiction