

Game Theory II:
 Price of Anarchy

Teachers: Ariel Procaccia (this time) and Alex Psomas

BACK TO PRISON

- The only Nash equilibrium in Prisoner's dilemma is bad; but how bad is it?
- Objective function: social cost = sum of costs
- NE is six times worse than the optimum
- We can make this arbitrarily bad

ANARCHY AND STABILITY

- Fix a class of games, an objective function, and an equilibrium concept
- The price of anarchy (stability) is the worstcase ratio between the worst (best) objective function value of an equilibrium of the game, and that of the optimal solution
- In this lecture:
- Objective function = social cost
- Equilibrium concept $=$ Nash equilibrium

EXAMPLE: COST SHARING

- n players in weighted directed graph G
- Player i wants to get from s_{i} to t_{i}; strategy space is $s_{i} \rightarrow t_{i}$ paths
- Each edge e has cost c_{e}
- Cost of edge is split between all players using edge
- Cost of player is sum of costs over
 edges on path

EXAMPLE: COST SHARING

- With n players, the example on the right has a NE with social cost n
- Optimal social cost is 1
- It follows that the price of anarchy of cost sharing games is at least n
- It is easy to see that the price of anarchy of cost sharing games is at most n - why?

EXAMPLE: COST SHARING

- Think of the 1 edges as cars, and the k edge as mass transit
- Bad Nash equilibrium with cost n
- Good Nash equilibrium with cost k
- Now let's modify the example...

EXAMPLE: COST SHARING

- $\mathrm{OPT}=k+1$
- Only equilibrium has cost $k \cdot H(n)$
- Therefore, the price of stability of cost sharing games is at least $\Omega(\log n)$
- We will show that the price of stability is $\Theta(\log n)$

POTENTIAL GAMES

- A game is an exact potential game if there exists a function $\Phi: \prod_{i=1}^{n} S_{i} \rightarrow \mathbb{R}$ such that for all $i \in N$, for all $\boldsymbol{s} \in \prod_{i=1}^{n} S_{i}$, and for all $s_{i}^{\prime} \in S_{i}$, $\operatorname{cost}_{i}\left(s_{i}^{\prime}, \boldsymbol{s}_{-i}\right)-\operatorname{cost}_{i}(\boldsymbol{s})=\Phi\left(s_{i}^{\prime}, \boldsymbol{s}_{-i}\right)-\Phi(\boldsymbol{s})$
- The existence of an exact potential function implies the existence of a pure Nash equilibrium - why?

POTENTIAL GAMES

- Theorem: the cost sharing game is an exact potential game
- Proof:
- Let $n_{e}(\boldsymbol{s})$ be the number of players using e under \boldsymbol{s}
- Define the potential function

$$
\Phi(s)=\sum_{e} \sum_{k=1}^{n_{e}(s)} \frac{c_{e}}{k}
$$

- If player changes paths, pays $\frac{c_{e}}{n_{e}(s)+1}$ for each new edge, gets $\frac{c_{e}}{n_{e}(s)}$ for each old edge, so $\Delta \operatorname{cost}_{i}=\Delta \Phi ■$

POTENTIAL GAMES

- Theorem: The cost of stability of cost sharing games is $O(\log n)$
- Proof:
- It holds that

$$
\operatorname{cost}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq H(n) \cdot \operatorname{cost}(\boldsymbol{s})
$$

- Take a strategy profile \boldsymbol{s} that minimizes Φ
- \boldsymbol{s} is an NE
- $\operatorname{cost}(\boldsymbol{s}) \leq \Phi(\boldsymbol{s}) \leq \Phi(\mathrm{OPT}) \leq H(n) \cdot \operatorname{cost}(\mathrm{OPT}) ■$

COST SHARING SUMMARY

－Upper bounds：\forall cost sharing game，
－PoA：\forall NE \boldsymbol{s} ， $\operatorname{cost}(\boldsymbol{s}) \leq n \cdot \operatorname{cost}(\mathrm{OPT})$
－PoS：ヨNE \boldsymbol{s} s．t．

$$
\operatorname{cost}(\boldsymbol{s}) \leq H(n) \cdot \operatorname{cost}(\mathrm{OPT})
$$

－Lower bounds：ヨcost sharing game s．t．
－PoA：ヨNE \boldsymbol{s} s．t． $\operatorname{cost}(\boldsymbol{s}) \geq n \cdot \operatorname{cost}(0 \mathrm{OT})$
－PoS：\forall NE \boldsymbol{s} ，
$\operatorname{cost}(\boldsymbol{s}) \geq H(n) \cdot \operatorname{cost}($ OPT $)$

NETWORK FORMATION GAMES

- Each player is a vertex v
- Strategy of v : set of undirected edges to build that touch v
- Strategy profile \boldsymbol{s} induces undirected graph $G(s)$
- Cost of building any edge is α
- $\operatorname{cost}_{v}(\boldsymbol{s})=\alpha n_{v}(\boldsymbol{s})+\sum_{u} d(u, v)$, where $n_{v}=$ \#edges bought by v, d is shortest path in \#edges
- $\operatorname{cost}(\boldsymbol{s})=\sum_{u \neq v} d(u, v)+\alpha|E|$

EXAMPLE: NETWORK FORMATION

NE with $\alpha=3$

Suboptimal

Optimal

EXAMPLE: NETWORK FORMATION

- Lemma: If $\alpha \geq 2$ then any star is optimal, and if $\alpha \leq 2$ then a complete graph is optimal
- Proof:
- Suppose $\alpha \leq 2$, and consider any graph that is not complete
- Adding an edge will decrease the sum of distances by at least 2 , and costs only α
- Suppose $\alpha \geq 2$ and the graph contains a star, so the diameter is at most 2; deleting a non-star edge increases the sum of distances by at most 2 , and saves α

EXAMPLE: NETWORK FORMATION

Poll 1

For which values of α is any star a NE, and for which is any complete graph a NE?

1. $\alpha \geq 1, \alpha \leq 1$
2. $\alpha \geq 2, \alpha \leq 1$
3. $\alpha \geq 1$, none
4. $\alpha \geq 2$, none

- Theorem:

1. If $\alpha \geq 2$ or $\alpha \leq 1, \mathrm{PoS}=1$
2. For $1<\alpha<2, \operatorname{PoS} \leq 4 / 3$

PROOF OF THEOREM

- Part 1 is immediate from the lemma and poll
- For $1<\alpha<2$, the star is a NE, while OPT is a complete graph
- Worst case ratio when $\alpha \rightarrow 1$:

$$
\begin{aligned}
& \frac{2 n(n-1)-2(n-1)+(n-1)}{n(n-1)+n(n-1) / 2} \\
& =\frac{4 n^{2}-6 n+2}{3 n^{2}-3 n}<\frac{4}{3}
\end{aligned}
$$

EXAMPLE: NETWORK CREATION

- Theorem [Fabrikant et al. 2003]: The price of anarcy of network creation games is $O(\sqrt{\alpha})$
- Lemma: If \boldsymbol{s} is a Nash equilibrium that induces a graph of diameter d, then $\operatorname{cost}(\boldsymbol{s}) \leq O(d) \cdot$ OPT

PROOF OF LEMMA

- $\mathrm{OPT}=\Omega\left(\alpha n+n^{2}\right)$
- Buying a connected graph costs at least $(n-1) \alpha$
- There are $\Omega\left(n^{2}\right)$ distances
- Distance costs $\leq d n^{2} \Rightarrow$ focus on edge costs
- There are at most $n-1$ cut edges \Rightarrow focus on noncut edges

PROOF OF LEMMA

- Claim: Let $e=(u, v)$ be a noncut edge, then the distance $d(u, v)$ with e deleted $\leq 2 d$
- $V_{e}=$ set of nodes s.t. the shortest path from u uses e
- Figure shows shortest path avoiding $e, e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ is the edge on the path entering V_{e}
- P_{u} is the shortest path from u to $u^{\prime} \Rightarrow\left|P_{u}\right| \leq d$
- $\left|P_{v}\right| \leq d-1$ as $P_{v} \cup\{e\}$ is shortest path from u to $v^{\prime} ■$

PROOF OF LEMMA

- Claim: There are $O(n d / \alpha)$ noncut edges paid for by any vertex u - Let $e=(u, v)$ be an edge paid for by u - By previous claim, deleting e increases distances from u by at most $2 d\left|V_{e}\right|$
- G is an equilibrium $\Rightarrow \alpha \leq 2 d\left|V_{e}\right| \Rightarrow$ $\left|V_{e}\right| \geq \alpha / 2 d$
- n vertices overall \Rightarrow can't be more than $2 n d / \alpha$ sets $V_{e} ■$

PROOF OF LEMMA

- $O(n d / \alpha)$ noncut edges per vertex
- $O(n d)$ total payment for these per vertex
- $O\left(n^{2} d\right)$ overall ■

PROOF OF THEOREM

- By lemma, it is enough to show that the diameter at a $\mathrm{NE} \leq 2 \sqrt{\alpha}$
- Suppose $d(u, v) \geq 2 k$ for some k
- By adding the edge (u, v), u pays α and improves distance to second half of the $u \rightarrow v$ shortest path by

$$
(2 k-1)+(2 k-3)+\cdots+1=k^{2}
$$

- If

$$
\alpha<k^{2} \leq\left(\frac{d(u, v)}{2}\right)^{2} \Rightarrow d(u, v)>2 \sqrt{\alpha}
$$

then it is beneficial to add edge - contradiction■

