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BACK TO PRISON
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• The only Nash equilibrium in Prisoner’s 
dilemma is bad; but how bad is it?

• Objective function: social cost = sum of costs

• NE is six times worse than the optimum

• We can make this arbitrarily bad



ANARCHY AND STABILITY

• Fix a class of games, an objective function, 
and an equilibrium concept

• The price of anarchy (stability) is the worst-
case ratio between the worst (best) 
objective function value of an equilibrium of 
the game, and that of the optimal solution

• In this lecture:

◦ Objective function = social cost

◦ Equilibrium concept = Nash equilibrium  



EXAMPLE: COST SHARING

• 𝑛 players in weighted directed graph 
𝐺

• Player 𝑖 wants to get from 𝑠𝑖 to 𝑡𝑖; 
strategy space is 𝑠𝑖 → 𝑡𝑖 paths

• Each edge 𝑒 has cost 𝑐𝑒

• Cost of edge is split between all 
players using edge

• Cost of player is sum of costs over 
edges on path

𝑠2𝑠1

𝑡1 𝑡2

1010 10

1 1

11



EXAMPLE: COST SHARING

• With 𝑛 players, the example on the 
right has a NE with social cost 𝑛

• Optimal social cost is 1

• It follows that the price of anarchy 
of cost sharing games is at least 𝑛

• It is easy to see that the price of 
anarchy of cost sharing games is at 
most 𝑛 — why? 
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EXAMPLE: COST SHARING

• Think of the 1 edges as cars, and 
the 𝑘 edge as mass transit

• Bad Nash equilibrium with cost 
𝑛

• Good Nash equilibrium with 
cost 𝑘

• Now let’s modify the example…
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EXAMPLE: COST SHARING

• OPT = 𝑘 + 1

• Only equilibrium has cost 
𝑘 ⋅ 𝐻(𝑛)

• Therefore, the price of 
stability of cost sharing 
games is at least Ω(log 𝑛)

• We will show that the price 
of stability is Θ(log 𝑛)
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POTENTIAL GAMES

• A game is an exact potential game if there 
exists a function Φ: ς𝑖=1

𝑛 𝑆𝑖 → ℝ such that 
for all 𝑖 ∈ 𝑁, for all 𝒔 ∈ ς𝑖=1

𝑛 𝑆𝑖 , and for all 
𝑠𝑖

′ ∈ 𝑆𝑖 , 
cost𝑖 𝑠𝑖

′, 𝒔−𝑖 − cost𝑖 𝒔 = Φ 𝑠𝑖
′, 𝒔−𝑖 − Φ(𝒔)

• The existence of an exact potential function 
implies the existence of a pure Nash 
equilibrium — why?



POTENTIAL GAMES

• Theorem: the cost sharing game is an exact 
potential game

• Proof:

◦ Let 𝑛𝑒 𝒔 be the number of players using 𝑒 under 𝒔

◦ Define the potential function 

Φ 𝒔 = 

𝑒



𝑘=1

𝑛𝑒(𝒔)
𝑐𝑒

𝑘

◦ If player changes paths, pays 
𝑐𝑒

𝑛𝑒 𝒔 +1
for each new 

edge, gets 
𝑐𝑒

𝑛𝑒 𝒔
for each old edge, so Δcost𝑖 = ΔΦ ∎



POTENTIAL GAMES

• Theorem: The cost of stability of cost sharing 
games is 𝑂(log 𝑛)

• Proof:

◦ It holds that  
cost 𝒔 ≤ Φ 𝒔 ≤ 𝐻 𝑛 ⋅ cost(𝒔)

◦ Take a strategy profile 𝒔 that minimizes Φ

◦ 𝒔 is an NE

◦ cost 𝒔 ≤ Φ 𝒔 ≤ Φ OPT ≤ 𝐻 𝑛 ⋅ cost(OPT) ∎



COST SHARING SUMMARY

• Upper bounds: ∀cost sharing game,
◦ PoA: ∀NE 𝒔,

cost 𝒔 ≤ 𝑛 ⋅ cost(OPT)

◦ PoS: ∃NE 𝒔 s.t.
cost 𝒔 ≤ 𝐻 𝑛 ⋅ cost(OPT)

• Lower bounds: ∃cost sharing game s.t.
◦ PoA: ∃NE 𝒔 s.t.

cost 𝒔 ≥ 𝑛 ⋅ cost(OPT)

◦ PoS: ∀NE 𝒔,
cost 𝒔 ≥ 𝐻 𝑛 ⋅ cost(OPT)



NETWORK FORMATION GAMES

• Each player is a vertex 𝑣

• Strategy of 𝑣: set of undirected edges to 
build that touch 𝑣

• Strategy profile 𝒔 induces undirected graph 
𝐺(𝒔)

• Cost of building any edge is 𝛼

• cost𝑣 𝒔 = 𝛼𝑛𝑣 𝒔 + σ𝑢 𝑑(𝑢, 𝑣), where 
𝑛𝑣 = #edges bought by 𝑣, 𝑑 is shortest path 
in #edges

• cost 𝒔 = σ𝑢≠𝑣 𝑑 𝑢, 𝑣 + 𝛼|𝐸|



NE with 𝛼 = 3

Suboptimal Optimal

EXAMPLE: NETWORK FORMATION



EXAMPLE: NETWORK FORMATION

• Lemma: If 𝛼 ≥ 2 then any star is optimal, and 
if 𝛼 ≤ 2 then a complete graph is optimal

• Proof:

◦ Suppose 𝛼 ≤ 2, and consider any graph that is 
not complete

◦ Adding an edge will decrease the sum of 
distances by at least 2, and costs only 𝛼

◦ Suppose 𝛼 ≥ 2 and the graph contains a star, so 
the diameter is at most 2; deleting a non-star 
edge increases the sum of distances by at most 2, 
and saves 𝛼 ∎



EXAMPLE: NETWORK FORMATION

• Theorem: 

1. If 𝛼 ≥ 2 or 𝛼 ≤ 1, PoS = 1

2. For 1 < 𝛼 < 2, PoS ≤ 4/3

For which values of 𝛼 is any star a NE, and 
for which is any complete graph a NE?

1. 𝛼 ≥ 1, 𝛼 ≤ 1 3. 𝛼 ≥ 1, none

2. 𝛼 ≥ 2, 𝛼 ≤ 1 4. 𝛼 ≥ 2, none

Poll 1

?



PROOF OF THEOREM

• Part 1 is immediate from the lemma and 
poll

• For 1 < 𝛼 < 2, the star is a NE, while OPT is 
a complete graph

• Worst case ratio when 𝛼 → 1:
2𝑛 𝑛 − 1 − 2 𝑛 − 1 + (𝑛 − 1)

𝑛 𝑛 − 1 + 𝑛(𝑛 − 1)/2

=
4𝑛2 − 6𝑛 + 2

3𝑛2 − 3𝑛
<

4

3
∎



EXAMPLE: NETWORK CREATION

• Theorem [Fabrikant et al. 2003]: The 
price of anarcy of network creation 
games is 𝑂( 𝛼)

• Lemma: If 𝒔 is a Nash equilibrium that 
induces a graph of diameter 𝑑, then 
cost(𝒔) ≤ 𝑂 𝑑 ⋅ OPT



PROOF OF LEMMA

• OPT = Ω 𝛼𝑛 + 𝑛2

◦ Buying a connected graph costs at least 
𝑛 − 1 𝛼

◦ There are Ω 𝑛2 distances

• Distance costs ≤ 𝑑𝑛2 ⇒ focus on edge 
costs

• There are at most 𝑛 − 1 cut edges ⇒
focus on noncut edges



PROOF OF LEMMA

• Claim: Let 𝑒 = (𝑢, 𝑣) be a noncut edge, then the 
distance 𝑑(𝑢, 𝑣) with 𝑒 deleted ≤ 2𝑑

◦ 𝑉𝑒 = set of nodes s.t. the shortest path from 𝑢 uses 𝑒

◦ Figure shows shortest path avoiding 𝑒, 𝑒′ = (𝑢′, 𝑣′)
is the edge on the path entering 𝑉𝑒

◦ 𝑃𝑢 is the shortest path from 𝑢 to 𝑢′ ⇒ 𝑃𝑢 ≤ 𝑑

◦ 𝑃𝑣 ≤ 𝑑 − 1 as 𝑃𝑣 ∪ {𝑒} is shortest path from 𝑢 to 
𝑣′ ∎

𝑣 𝑣′

𝑢 𝑢′

𝑒 𝑒′

𝑉𝑒

𝑃𝑣

𝑃𝑢



PROOF OF LEMMA

• Claim: There are 𝑂(𝑛𝑑/𝛼) noncut
edges paid for by any vertex 𝑢

◦ Let 𝑒 = (𝑢, 𝑣) be an edge paid for by 𝑢

◦ By previous claim, deleting 𝑒 increases 
distances from 𝑢 by at most 2𝑑|𝑉𝑒|

◦ 𝐺 is an equilibrium ⇒ 𝛼 ≤ 2𝑑 𝑉𝑒 ⇒
𝑉𝑒 ≥ 𝛼/2𝑑

◦ 𝑛 vertices overall ⇒ can’t be more than 
2𝑛𝑑/𝛼 sets 𝑉𝑒 ∎



PROOF OF LEMMA

• 𝑂(𝑛𝑑/𝛼) noncut edges per vertex

• 𝑂(𝑛𝑑) total payment for these per 
vertex

• 𝑂(𝑛2𝑑) overall  ∎



PROOF OF THEOREM

• By lemma, it is enough to show that the diameter 
at a NE ≤ 2 𝛼

• Suppose 𝑑 𝑢, 𝑣 ≥ 2𝑘 for some 𝑘

• By adding the edge (𝑢, 𝑣), 𝑢 pays 𝛼 and improves 
distance to second half of the 
𝑢 → 𝑣 shortest path by 

2𝑘 − 1 + 2𝑘 − 3 + ⋯ + 1 = 𝑘2

• If 

𝛼 < 𝑘2 ≤
𝑑 𝑢, 𝑣

2

2

⇒ 𝑑 𝑢, 𝑣 > 2 𝛼

then it is beneficial to add edge — contradiction∎


