

# TRUTH JUSTICE ALGOS

#### Game Theory I: Basic Concepts

Teachers: Ariel Procaccia (this time) and Alex Psomas

### NORMAL-FORM GAME

- A game in normal form consists of:
  - Set of players  $N = \{1, ..., n\}$
  - Strategy set S
  - For each  $i \in N$ , utility function  $u_i: S^n \to \mathbb{R}$ : if each  $j \in N$  plays the strategy  $s_j \in S$ , the utility of player iis  $u_i(s_1, ..., s_n)$

### THE PRISONER'S DILEMMA

- Two men are charged with a crime
- They are told that:
  - If one rats out and the other does not, the rat will be freed, other jailed for nine years
  - If both rat out, both will be jailed for six years
- They also know that if neither rats out, both will be jailed for one year

### THE PRISONER'S DILEMMA



## What would you do?

### ON TV



http://youtu.be/S0qjK3TWZE8

### THE PROFESSOR'S DILEMMA



**Dominant strategies?** 

### NASH EQUILIBRIUM

- In a Nash equilibrium, no player wants to unilaterally deviate
- Each player's strategy is a **best response** to strategies of others
- Formally, a Nash equilibrium is a vector of strategies  $\mathbf{s} = (s_1 \dots, s_n) \in S^n$  such that for all  $i \in N, s'_i \in S$ ,  $u_i(\mathbf{s}) \ge u_i(s_1, \dots, s_{i-1}, s'_i, s_{i+1}, \dots, s_n)$

### THE PROFESSOR'S DILEMMA



Nash equilibria?

### **ROCK-PAPER-SCISSORS**

|   | R    | Р    | S    |
|---|------|------|------|
| R | 0,0  | -1,1 | 1,-1 |
| Р | 1,-1 | 0,0  | -1,1 |
| S | -1,1 | 1,-1 | 0,0  |

Nash equilibria?

### MIXED STRATEGIES

- A mixed strategy is a probability distribution over (pure) strategies
- The mixed strategy of player  $i \in N$  is  $x_i$ , where

$$x_i(s_i) = \Pr[i \text{ plays } s_i]$$

• The utility of player  $i \in N$  is

$$u_i(x_1, \dots, x_n) = \sum_{(s_1, \dots, s_n) \in S^n} u_i(s_1, \dots, s_n) \cdot \prod_{j=1}^n x_j(s_j)$$

n

### EXERCISE: MIXED NE

- Exercise: player 1 plays  $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ , player 2 plays  $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ . What is  $u_1$ ?
- Exercise: Both players play  $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ . What is  $u_1$ ?

|   | R    | Р    | S    |
|---|------|------|------|
| R | 0,0  | -1,1 | 1,-1 |
| Р | 1,-1 | 0,0  | -1,1 |
| S | -1,1 | 1,-1 | 0,0  |

#### EXERCISE: MIXED NE

Poll 1

 Which is a NE?

 1. 
$$\left(\left(\frac{1}{2}, \frac{1}{2}, 0\right), \left(\frac{1}{2}, \frac{1}{2}, 0\right)\right)$$
 3.  $\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\right)$ 

 2.  $\left(\left(\frac{1}{2}, \frac{1}{2}, 0\right), \left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)$ 
 4.  $\left(\left(\frac{1}{3}, \frac{2}{3}, 0\right), \left(\frac{2}{3}, 0, \frac{1}{3}\right)\right)$ 

|   | R    | Р    | S    |
|---|------|------|------|
| R | 0,0  | -1,1 | 1,-1 |
| P | 1,-1 | 0,0  | -1,1 |
| S | -1,1 | 1,-1 | 0,0  |

### NASH'S THEOREM

- Theorem [Nash, 1950]: In any (finite) game there exists at least one (possibly mixed) Nash equilibrium
- What about computing a Nash equilibrium? Stay tuned...

### DOES NE MAKE SENSE?

- Two players, strategies are {2, ..., 100}
- If both choose the same number, that is what they get
- If one chooses *s*, the other *t*, and s < t, the former player gets s + 2, and the latter gets s 2
- Poll 2: What would you choose?



### CORRELATED EQUILIBRIUM

- Let  $N = \{1,2\}$  for simplicity
- A mediator chooses a pair of strategies
   (s<sub>1</sub>, s<sub>2</sub>) according to a distribution p
   over S<sup>2</sup>
- Reveals  $s_1$  to player 1 and  $s_2$  to player 2
- When player 1 gets  $s_1 \in S$ , he knows the distribution over strategies of 2 is

$$\Pr[s_2|s_1] = \frac{\Pr[s_1 \land s_2]}{\Pr[s_1]} = \frac{p(s_1, s_2)}{\Pr[s_1]}$$

### CORRELATED EQUILIBRIUM

• Player 1 is best responding if for all  $s'_1 \in S$  $\sum_{s_2 \in S} \Pr[s_2|s_1] u_1(s_1, s_2) \ge \sum_{s_2 \in S} \Pr[s_2|s_1] u_1(s'_1, s_2)$ 

• Equivalently,  

$$\sum_{s_2 \in S} p(s_1, s_2) u_1(s_1, s_2) \ge \sum_{s_2 \in S} p(s_1, s_2) u_1(s_1', s_2)$$

- *p* is a correlated equilibrium (CE) if both players are best responding
- Every Nash equilibrium is a correlated equilibrium, but not vice versa

### GAME OF CHICKEN



http://youtu.be/u7hZ9jKrwvo

### GAME OF CHICKEN

- Social welfare is the sum of utilities
- Pure NE: (C,D) and (D,C), social welfare = 5
- Mixed NE: both (1/2,1/2), social
   Welfare = 4
- Optimal social welfare
   = 6

|        | Dare | Chicken |
|--------|------|---------|
| Dare   | 0,0  | 4,1     |
| hicken | 1,4  | 3,3     |

### GAME OF CHICKEN

• Correlated equilibrium:



• Social welfare of  $CE = \frac{16}{3}$ 

### **IMPLEMENTATION OF CE**

- Instead of a mediator, use a hat!
- Balls in hat are labeled with "chicken" or "dare", each blindfolded player takes a ball



#### Poll 3

Which balls implement the distribution of the previous slide?

- 1. 1 chicken, 1 dare 3. 2 chicken, 1 dare
- 2. 1 chicken, 2 dare 4. 2 chicken, 2 dare



### CE AS LP

 Can compute CE via linear programming in polynomial time!

find 
$$\forall s_1, s_2 \in S, p(s_1, s_2)$$
  
s.t.  $\forall s_1, s'_1 \in S, \sum_{s_2 \in S} p(s_1, s_2)u_1(s_1, s_2) \ge \sum_{s_2 \in S} p(s_1, s_2)u_1(s'_1, s_2)$   
 $\forall s_2, s'_2 \in S, \sum_{s_1 \in S} p(s_1, s_2)u_2(s_1, s_2) \ge \sum_{s_1 \in S} p(s_1, s_2)u_2(s_1, s'_2)$   
 $\sum_{s_1, s_2 \in S} p(s_1, s_2) = 1$   
 $\forall s_1, s_2 \in S, p(s_1, s_2) \in [0, 1]$