

Game Theory I: Basic Concepts

Teachers: Ariel Procaccia (this time) and Alex Psomas

NORMAL-FORM GAME

- A game in normal form consists of:
- Set of players $N=\{1, \ldots, n\}$
- Strategy set S
- For each $i \in N$, utility function $u_{i}: S^{n} \rightarrow \mathbb{R}$: if each $\mathrm{j} \in N$ plays the strategy $s_{j} \in S$, the utility of player i is $u_{i}\left(s_{1}, \ldots, s_{n}\right)$

THE PRISONER'S DILEMMA

- Two men are charged with a crime
- They are told that:
- If one rats out and the other does not, the rat will be freed, other jailed for nine years
- If both rat out, both will be jailed for six years
- They also know that if neither rats out, both will be jailed for one year

THE PRISONER'S DILEMMA

Cooperate Defect
Cooperate
Defect

$$
\begin{array}{l|l}
0,-9 & -6,-6
\end{array}
$$

What would you do?

ON TV

http://youtu.be/S0qjK3TWZE8

THE PROFESSOR'S DILEMMA

Class

Dominant strategies?

NASH EQUILIBRIUM

- In a Nash equilibrium, no player wants to unilaterally deviate
- Each player's strategy is a best response to strategies of others
- Formally, a Nash equilibrium is a vector of strategies $\boldsymbol{s}=\left(s_{1} \ldots, s_{n}\right) \in S^{n}$ such that for all $i \in N, s_{i}^{\prime} \in S$, $u_{i}(\boldsymbol{s}) \geq u_{i}\left(s_{1}, \ldots, s_{i-1}, s_{i}^{\prime}, s_{i+1}, \ldots, s_{n}\right)$

THE PROFESSOR'S DILEMMA

Class

Nash equilibria?

ROCK-PAPER-SCISSORS

Nash equilibria?

MIXED STRATEGIES

- A mixed strategy is a probability distribution over (pure) strategies
- The mixed strategy of player $i \in N$ is x_{i}, where

$$
x_{i}\left(s_{i}\right)=\operatorname{Pr}\left[i \text { plays } s_{i}\right]
$$

- The utility of player $i \in N$ is

$$
u_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(s_{1}, \ldots, s_{n}\right) \in S^{n}} u_{i}\left(s_{1}, \ldots, s_{n}\right) \cdot \prod_{j=1}^{n} x_{j}\left(s_{j}\right)
$$

EXERCISE: MIXED NE

- Exercise: player 1 plays $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, player 2 plays $\left(0, \frac{1}{2}, \frac{1}{2}\right)$. What is u_{1} ?
- Exercise: Both players play $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. What is u_{1} ?

\[

\]

EXERCISE: MIXED NE

Poll 1

Which is a NE?
$\begin{array}{ll}\text { 1. }\left(\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right)\right) & \text { 3. }\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\right) \\ \text { 2. }\left(\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right) & \text { 4. }\left(\left(\frac{1}{3}, \frac{2}{3}, 0\right),\left(\frac{2}{3}, 0, \frac{1}{3}\right)\right)\end{array}$

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

NASH'S THEOREM

- Theorem [Nash, 1950]: In any (finite) game there exists at least one (possibly mixed) Nash equilibrium
- What about computing a Nash equilibrium? Stay tuned...

DOES NE MAKE SENSE?

- Two players, strategies are $\{2, \ldots, 100\}$
- If both choose the same number, that is what they get
- If one chooses s, the other t, and $s<t$, the former player gets $s+2$, and the latter gets $s-2$
- Poll 2: What would you choose?

CORRELATED EQUILIBRIUM

- Let $N=\{1,2\}$ for simplicity
- A mediator chooses a pair of strategies $\left(s_{1}, s_{2}\right)$ according to a distribution p over S^{2}
- Reveals s_{1} to player 1 and s_{2} to player 2
- When player 1 gets $s_{1} \in S$, he knows the distribution over strategies of 2 is

$$
\operatorname{Pr}\left[s_{2} \mid s_{1}\right]=\frac{\operatorname{Pr}\left[s_{1} \wedge s_{2}\right]}{\operatorname{Pr}\left[s_{1}\right]}=\frac{p\left(s_{1}, s_{2}\right)}{\operatorname{Pr}\left[s_{1}\right]}
$$

CORRELATED EQUILIBRIUM

- Player 1 is best responding if for all $s_{1}^{\prime} \in S$

$$
\sum_{s_{2} \in S} \operatorname{Pr}\left[s_{2} \mid s_{1}\right] u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in S} \operatorname{Pr}\left[s_{2} \mid s_{1}\right] u_{1}\left(s_{1}^{\prime}, s_{2}\right)
$$

- Equivalently,

$$
\sum_{s_{2} \in S} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in S} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}^{\prime}, s_{2}\right)
$$

- p is a correlated equilibrium (CE) if both players are best responding
- Every Nash equilibrium is a correlated equilibrium, but not vice versa

GAME OF CHICKEN

http://youtu.be/u7hz9jKrwvo

GAME OF CHICKEN

- Social welfare is the sum of utilities
- Pure NE: (C,D) and (D,C), social welfare $=5$
- Mixed NE: both (1/2,1/2), social welfare $=4$
- Optimal social welfare $=6$

GAME OF CHICKEN

- Correlated equilibrium:
- (D,D): 0
- (D,C): $\frac{1}{3}$
- (C,D): $\frac{1}{3}$
- (C,C): $\frac{1}{3}$

- Social welfare of $\mathrm{CE}=\frac{16}{3}$

IMPLEMENTATION OF CE

- Instead of a mediator, use a hat!
- Balls in hat are labeled with "chicken" or "dare", each blindfolded player takes a ball

Poll 3
Which balls implement the distribution of the previous slide?

1. 1 chicken, 1 dare 3.2 chicken, 1 dare
2. 1 chicken, 2 dare 4.2 chicken, 2 dare

CE AS LP

- Can compute CE via linear programming in polynomial time!
find $\forall s_{1}, s_{2} \in S, p\left(s_{1}, s_{2}\right)$
s.t. $\forall s_{1}, s_{1}^{\prime} \in S, \sum_{s_{2} \in S} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in S} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}^{\prime}, s_{2}\right)$
$\forall s_{2}, s_{2}^{\prime} \in S, \sum_{s_{1} \in S} p\left(s_{1}, s_{2}\right) u_{2}\left(s_{1}, s_{2}\right) \geq \sum_{s_{1} \in S} p\left(s_{1}, s_{2}\right) u_{2}\left(s_{1}, s_{2}^{\prime}\right)$

$$
p\left(s_{1}, s_{2}\right)=1
$$

$s_{1}, s_{2} \in S$
$\forall s_{1}, s_{2} \in S, p\left(s_{1}, s_{2}\right) \in[0,1]$

