

Fair Division V: Indivisible Goods

Teachers: Ariel Procaccia (this time) and Alex Psomas

INDIVISIBLE GOODS

- Set G of m goods G
- Each good is indivisible
- Players $N=\{1, \ldots, n\}$ have valuations V_{i} for bundles of goods
- Valuations are additive if for all $S \subseteq G$ and $i \in$ $N, V_{i}(S)=\sum_{g \in G} V_{i}(g)$
- Assume additivity unless noted otherwise
- An allocation is a partition of the goods, denoted $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$
- Envy-freeness and proportionality are infeasible!

MAXIMIN SHARE GUARANTEE

MAXIMIN SHARE GUARANTEE

Total: \$50	Total: $\$ 30$	Total: \$20				
\$50	\$30	\$3	\$2	\$5	\$5	\$5
9 8		Wma		د1)	5	4690
\$3	\$2	\$5	\$40	\$10	\$20	\$20
Total:				$\begin{gathered} \text { Total } \\ \$ 30 \end{gathered}$		Total: \$40

MAXIMIN SHARE GUARANTEE

- Maximin share (MMS) guarantee [Budish 2011] of player i :

$$
\max _{X_{1}, \ldots, X_{n}} \min _{j} V_{i}\left(X_{j}\right)
$$

- An MMS allocation is such that $V_{i}\left(A_{i}\right)$ is at least i 's MMS guarantee for all $i \in N$
- For $n=2$ an MMS allocation always exists
- Theorem [Kurokawa et al. 2018]: $\forall n \geq 3$ there exist additive valuation functions that do not admit an MMS allocation

COUNTEREXAMPLE FOR $n=3$

COUNTEREXAMPLE FOR $n=3$

APPROXIMATE ENVY-FREENESS

- Assume general monotonic valuations, i.e., for all $S \subseteq T \subseteq G, V_{i}(S) \leq V_{i}(T)$
- An allocation A_{1}, \ldots, A_{n} is envy free up to one good (EF1) if and only if
$\forall i, j \in N, \exists g \in A_{j}$ s.t. $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right)$
- Theorem [Lipton et al. 2004]: An EF1 allocation exists and can be found in polynomial time

PROOF OF THEOREM

- A partial allocation is an allocation of a subset of the goods
- Given a partial allocation \boldsymbol{A}, we have an edge (i, j) in its envy graph if i envies j
- Lemma: An EF1 partial allocation \boldsymbol{A} can be transformed in polynomial time into an EF1 partial allocation \boldsymbol{B} of the same goods with an acyclic envy graph

PROOF OF LEMMA

- If G has a cycle C, shift allocations along C to obtain \boldsymbol{A}^{\prime}; clearly EF1 is maintained
- \#edges in envy graph of \boldsymbol{A}^{\prime} decreased:
- Same edges between $N \backslash C$
- Edges from $N \backslash C$ to C shifted
- Edges from C to $N \backslash C$ can only decrease
- Edges inside C decreased
- Iteratively remove cycles ■

PROOF OF THEOREM

- Maintain EF1 and acyclic envy graph
- In round 1 , allocate good g_{1} to arbitrary agent
- g_{1}, \ldots, g_{k-1} are allocated in acyclic \boldsymbol{A}
- Derive \boldsymbol{B} by allocating g_{k} to source i
- $V_{j}\left(B_{j}\right)=V_{j}\left(A_{j}\right) \geq V_{j}\left(A_{i}\right)=V_{j}\left(B_{i} \backslash\left\{g_{k}\right\}\right)$
- Use lemma to eliminate cycles ■

ROUND ROBIN

- Let us return to additive valuations
- Now proving the existence of an EF1 allocation is trivial
- A round-robin allocation is EF1:

IMPLICATIONS FOR CAKE CUTTING

- In cake cutting, we can define an allocation to be ϵ-envy free if for all $i, j \in N$,

$$
V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)-\epsilon
$$

- The foregoing result has interesting implications for cake cutting!

Poll 1

Complexity of ϵ-EF in the RW model?

- $O\left(\frac{1}{\epsilon}\right)$
- $O\left(\frac{n}{\epsilon^{2}}\right)$
- $O\left(\frac{1}{\epsilon^{2}}\right)$
- $O\left(\frac{n^{2}}{\epsilon}\right)$

MAXIMUM NASH WELFARE

- An allocation \boldsymbol{A} is Pareto efficient if there is no allocation \boldsymbol{A}^{\prime} such that $V_{i}\left(A_{i}^{\prime}\right) \geq V_{i}\left(A_{i}\right)$ for all $i \in N$, and $V_{j}\left(A_{j}^{\prime}\right)>V_{j}\left(A_{j}\right)$ for some $j \in N$
- Round Robin is not efficient
- Is there a rule that guarantees both EF1 and efficiency?

MAXIMUM NASH WELFARE

- The Nash welfare of an allocation \boldsymbol{A} is the product of values

$$
\operatorname{NW}(\boldsymbol{A})=\prod_{i \in N} V_{i}\left(A_{i}\right)
$$

- The maximum Nash welfare (MNW) solution chooses an allocation that maximizes the Nash welfare
- For ease of exposition we ignore the case of $\mathrm{NW}(\boldsymbol{A})=0$ for all \boldsymbol{A}
- Theorem [Caragiannis et al. 2016]: Assuming additive valuations, the MNW solution is EF1 and efficient

PROOF OF THEOREM

- Efficiency is obvious, so we focus on EF1
- Assume for contradiction that i envies j by more than one good
- Let $g^{\star} \in \operatorname{argmin}_{g \in A_{j}, V_{i}}(g)>0 V_{j}(g) / V_{i}(g)$
- Move g^{\star} from j to i to obtain \boldsymbol{A}^{\prime}, we will show that $\operatorname{NW}\left(\boldsymbol{A}^{\prime}\right)>\operatorname{NW}(\boldsymbol{A})$
- It holds that $V_{k}\left(A_{k}\right)=V_{k}\left(A_{k}^{\prime}\right)$ for all $k \neq i, j$, $V_{i}\left(A_{i}^{\prime}\right)=V_{i}\left(A_{i}\right)+V_{i}\left(g^{\star}\right)$, and

$$
V_{j}\left(A_{j}^{\prime}\right)=V_{j}\left(A_{j}\right)-V_{j}\left(g^{\star}\right)
$$

PROOF OF THEOREM

- $\frac{\mathrm{NW}\left(A^{\prime}\right)}{\mathrm{NW}(A)}>1 \Leftrightarrow\left[1-\frac{V_{j}\left(g^{\star}\right)}{V_{j}\left(A_{j}\right)}\right]\left[1+\frac{V_{i}\left(g^{\star}\right)}{V_{i}\left(A_{i}\right)}\right]>1 \Leftrightarrow$

$$
\frac{V_{j}\left(g^{\star}\right)}{V_{i}\left(g^{\star}\right)}\left[V_{i}\left(A_{i}\right)+V_{i}\left(g^{\star}\right)\right]<V_{j}\left(A_{j}\right)
$$

- Due to our choice of g^{\star},

$$
\frac{V_{j}\left(g^{\star}\right)}{V_{i}\left(g^{\star}\right)} \leq \frac{\sum_{g \in A_{j}} V_{j}(g)}{\sum_{g \in A_{j}} V_{i}(g)}=\frac{V_{j}\left(A_{j}\right)}{V_{i}\left(A_{j}\right)}
$$

- Due to EF1 violation, we have

$$
V_{i}\left(A_{i}\right)+V_{i}\left(g^{\star}\right)<V_{i}\left(A_{j}\right)
$$

- Multiply the last two inequalities to get the first ■

TRACTABILITY OF MNW

[Caragiannis et al., 2016]

INTERFACE

AN OPEN PROBLEM

- An allocation A_{1}, \ldots, A_{n} is envy free up to any good (EFX) if and only if

$$
\forall i, j \in N, \forall g \in A_{j}, v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right)
$$

- Strictly stronger than EF1, strictly weaker than EF
- An EFX allocation exists for two players with monotonic valuations
- Existence is an open problem for $n \geq 3$ players with additive valuations

