

Fair Division V: Indivisible Goods

Teachers: Ariel Procaccia (this time) and Alex Psomas

INDIVISIBLE GOODS

- Set G of m goods G
- Each good is indivisible
- Players $N = \{1, ..., n\}$ have valuations V_i for bundles of goods
- Valuations are additive if for all $S \subseteq G$ and $i \in N$, $V_i(S) = \sum_{g \in G} V_i(g)$
- Assume additivity unless noted otherwise
- An allocation is a partition of the goods, denoted $A = (A_1, ..., A_n)$
- Envy-freeness and proportionality are infeasible!

MAXIMIN SHARE GUARANTEE

MAXIMIN SHARE GUARANTEE

MAXIMIN SHARE GUARANTEE

Maximin share (MMS) guarantee [Budish 2011] of player *i*:

 $\max_{X_1,\dots,X_n} \min_j V_i(X_j)$

- An MMS allocation is such that $V_i(A_i)$ is at least *i*'s MMS guarantee for all $i \in N$
- For n = 2 an MMS allocation always exists
- Theorem [Kurokawa et al. 2018]: ∀n ≥ 3 there exist additive valuation functions that do not admit an MMS allocation

COUNTEREXAMPLE FOR n = 3

COUNTEREXAMPLE FOR n = 3

APPROXIMATE ENVY-FREENESS

- Assume general monotonic valuations, i.e., for all $S \subseteq T \subseteq G$, $V_i(S) \leq V_i(T)$
- An allocation $A_1, ..., A_n$ is envy free up to one good (EF1) if and only if $\forall i, j \in N, \exists g \in A_i$ s.t. $v_i(A_i) \ge v_i(A_i \setminus \{g\})$
- Theorem [Lipton et al. 2004]: An EF1 allocation exists and can be found in polynomial time

- A partial allocation is an allocation of a subset of the goods
- Given a partial allocation *A*, we have an edge (*i*, *j*) in its envy graph if *i* envies *j*
- Lemma: An EF1 partial allocation *A* can be transformed in polynomial time into an EF1 partial allocation *B* of the same goods with an acyclic envy graph

PROOF OF LEMMA

- If G has a cycle C, shift allocations along C to obtain A'; clearly EF1 is maintained
- #edges in envy graph of A' decreased:
 - Same edges between $N \setminus C$
 - Edges from $N \setminus C$ to C shifted
 - Edges from C to $N \setminus C$ can only decrease
 - Edges inside C decreased
- Iteratively remove cycles

- Maintain EF1 and acyclic envy graph
- In round 1, allocate good g_1 to arbitrary agent
- g_1, \ldots, g_{k-1} are allocated in acyclic **A**
- Derive **B** by allocating g_k to source *i*
- $V_j(B_j) = V_j(A_j) \ge V_j(A_i) = V_j(B_i \setminus \{g_k\})$
- Use lemma to eliminate cycles

ROUND ROBIN

- Let us return to additive valuations
- Now proving the existence of an EF1 allocation is trivial
- A round-robin allocation is EF1:

IMPLICATIONS FOR CAKE CUTTING

- In cake cutting, we can define an allocation to be ϵ -envy free if for all $i, j \in N$, $V_i(A_i) \ge V_i(A_j) - \epsilon$
- The foregoing result has interesting implications for cake cutting!

MAXIMUM NASH WELFARE

- An allocation A is Pareto efficient if there is no allocation A' such that $V_i(A'_i) \ge V_i(A_i)$ for all $i \in N$, and $V_j(A'_j) > V_j(A_j)$ for some $j \in N$
- Round Robin is not efficient
- Is there a rule that guarantees both EF1 and efficiency?

MAXIMUM NASH WELFARE

• The Nash welfare of an allocation *A* is the product of values

$$NW(A) = \prod_{i \in N} V_i(A_i)$$

- The maximum Nash welfare (MNW) solution chooses an allocation that maximizes the Nash welfare
- For ease of exposition we ignore the case of NW(A) = 0 for all A
- Theorem [Caragiannis et al. 2016]: Assuming additive valuations, the MNW solution is EF1 and efficient

- Efficiency is obvious, so we focus on EF1
- Assume for contradiction that *i* envies *j* by more than one good
- Let $g^* \in \operatorname{argmin}_{g \in A_j, V_i(g) > 0} V_j(g) / V_i(g)$
- Move g^{*} from j to i to obtain A', we will show that NW(A') > NW(A)
- It holds that $V_k(A_k) = V_k(A'_k)$ for all $k \neq i, j$, $V_i(A'_i) = V_i(A_i) + V_i(g^*)$, and $V_j(A'_j) = V_j(A_j) - V_j(g^*)$

- $\frac{\operatorname{NW}(A')}{\operatorname{NW}(A)} > 1 \Leftrightarrow \left[1 \frac{V_j(g^*)}{V_j(A_j)}\right] \left[1 + \frac{V_i(g^*)}{V_i(A_i)}\right] > 1 \Leftrightarrow$ $\frac{V_j(g^*)}{V_i(g^*)} \left[V_i(A_i) + V_i(g^*)\right] < V_j(A_j)$
- Due to our choice of g^* , $\frac{V_j(g^*)}{V_i(g^*)} \le \frac{\sum_{g \in A_j} V_j(g)}{\sum_{g \in A_j} V_i(g)} = \frac{V_j(A_j)}{V_i(A_j)}$
- Due to EF1 violation, we have $V_i(A_i) + V_i(g^*) < V_i(A_j)$
- Multiply the last two inequalities to get the first

TRACTABILITY OF MNW

[Caragiannis et al., 2016]

INTERFACE

THE BASICS

AN OPEN PROBLEM

- An allocation $A_1, ..., A_n$ is envy free up to any good (EFX) if and only if $\forall i, j \in N, \forall g \in A_j, v_i(A_i) \ge v_i(A_j \setminus \{g\})$
- Strictly stronger than EF1, strictly weaker than EF
- An EFX allocation exists for two players with monotonic valuations
- Existence is an open problem for $n \ge 3$ players with additive valuations