

Fair Division IV: Rent Division

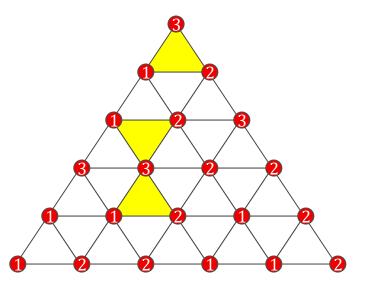
Teachers: Ariel Procaccia (this time) and Alex Psomas

THE WHINING PHILOSOPHERS PROBLEM

Nir Ben Moshe

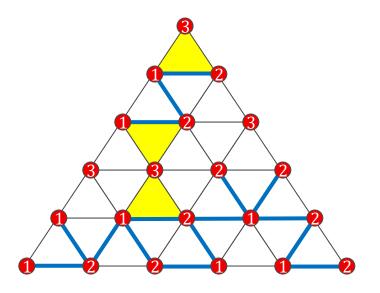
SPERNER'S LEMMA

- Triangle *T* partitioned into elementary triangles
- Label vertices by {1,2,3} using Sperner labeling:
 - Main vertices are different
 - Label of vertex on an edge
 (*i*, *j*) of *T* is *i* or *j*
- Lemma: Any Sperner labeling contains at least one fully labeled elementary triangle



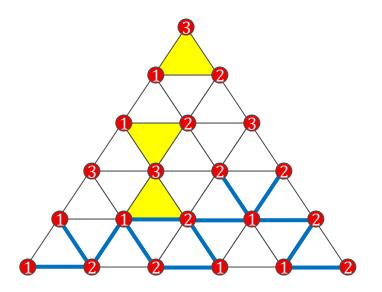
PROOF OF LEMMA

- Doors are 12 edges
- Rooms are elementary triangles
- #doors on the boundary of *T* is odd
- Every room has ≤ 2 doors; one door iff the room is 123



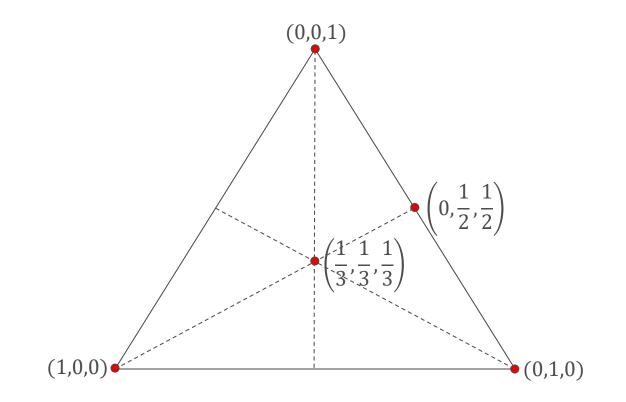
PROOF OF LEMMA

- Start at door on boundary and walk through it
- Room is fully labeled or it has another door...
- No room visited twice
- Eventually walk into fully labeled room or back to boundary
- But #doors on boundary is odd ■

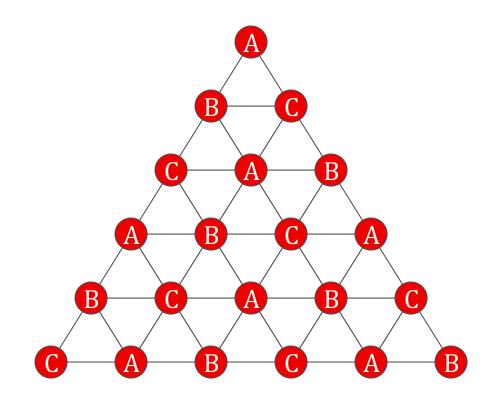


THE MODEL

- Assume there are three players A, B, C
- Goal is to assign the rooms and divide the rent in a way that is envy free: each player wants a different room at the given prices
- Sum of prices for three rooms is 1
- Theorem [Su 99]: An envy-free solution always exists under some assumptions

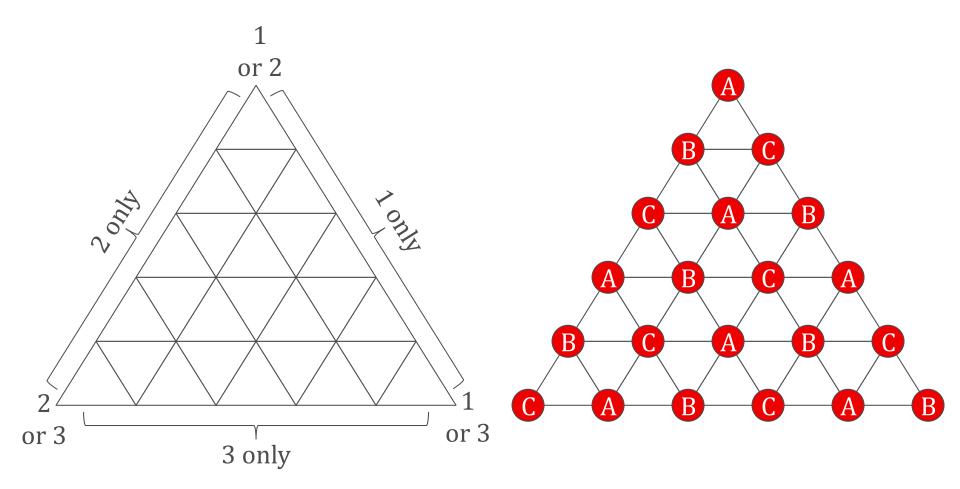


• "Triangulate" and assign "ownership" of each vertex to each of A, B, and C, in a way that each elementary triangle is an ABC triangle

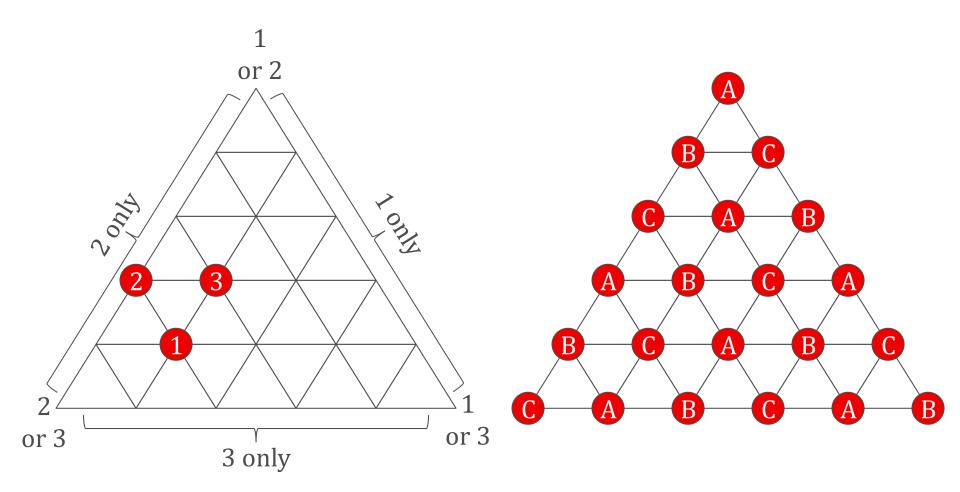


- Ask the owner of each vertex to tell us which room he prefers
- This gives a new labeling by 1, 2, 3
- Assume that a person wants a free room if one is offered to him

• Choice of rooms on edges is constrained by free room assumption



• Sperner's lemma (variant): such a labeling must have a 123 triangle



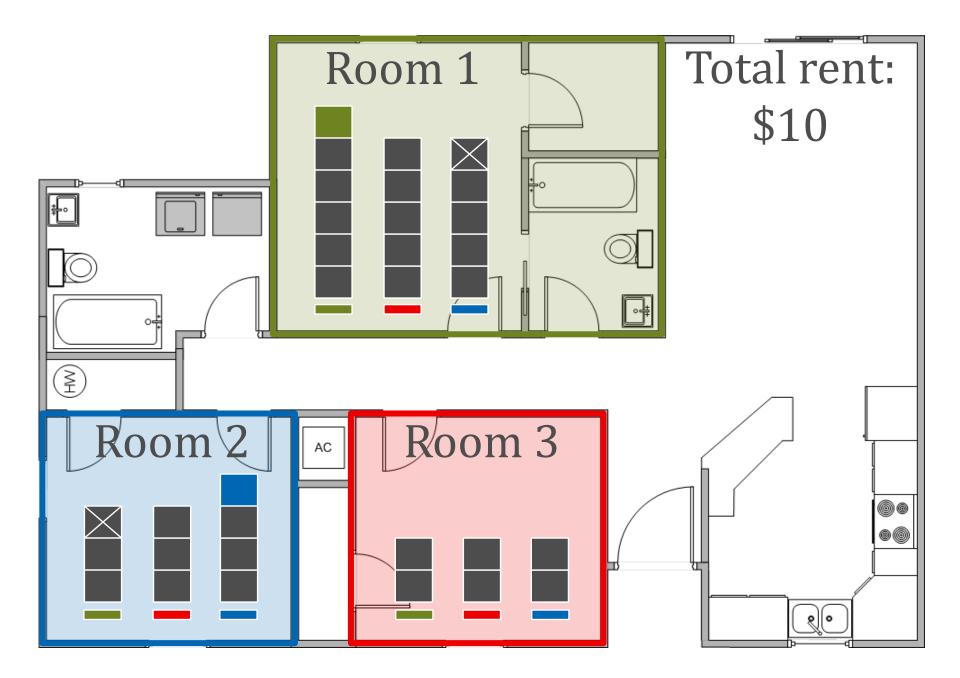
- Such a triangle is nothing but an approximately EF solution!
- By making the triangulation finer, we can approach envy-freeness
- Under additional closedness assumption, leads to existence of an EF solution

DISCUSSION

- It is possible to derive an algorithm from the proof
- Same techniques generalize to more housemates
- Same proof (with the original Sperner's Lemma) shows existence of EF cake division!

QUASI-LINEAR UTILITIES

- Suppose each player $i \in N$ has value v_{ir} for room r
- $\sum_{r} v_{ir} = R$, where *R* is the total rent
- The utility of player i for getting room r at price p_r is $v_{ir} p_r$
- A solution consists of an assignment π and a price vector p, where p_r is the price of room r
- Solution (π, \mathbf{p}) is envy free if $\forall i, j \in N, v_{i\pi(i)} - p_{\pi(i)} \ge v_{i\pi(j)} - p_{\pi(j)}$
- Theorem [Svensson 1983]: An envy-free solution always exists under quasi-linearity



PROPERTIES OF EF SOLUTIONS

• Allocation π is welfare-maximizing if

$$\pi \in \operatorname{argmax}_{\sigma} \sum_{i \in N} v_{i\sigma(i)}$$

- Lemma 1: If (π, p) is an EF solution, then π is a welfare-maximizing assignment
- Lemma 2: If (π, p) is an EF solution and σ is a welfare-maximizing assignment, then (σ, p) is an EF solution, and for all *i*,

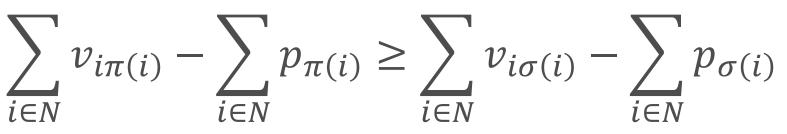
$$v_{i\pi(i)} - p_{\pi(i)} = v_{i\sigma(i)} - p_{\sigma(i)}$$

PROOF OF LEMMA 1

- Let (π, p) be an EF solution, and let σ be another assignment
- Due to EF, for all *i*,

$$v_{i\pi(i)} - p_{\pi(i)} \ge v_{i\sigma(i)} - p_{\sigma(i)}$$

• Summing over all *i*,



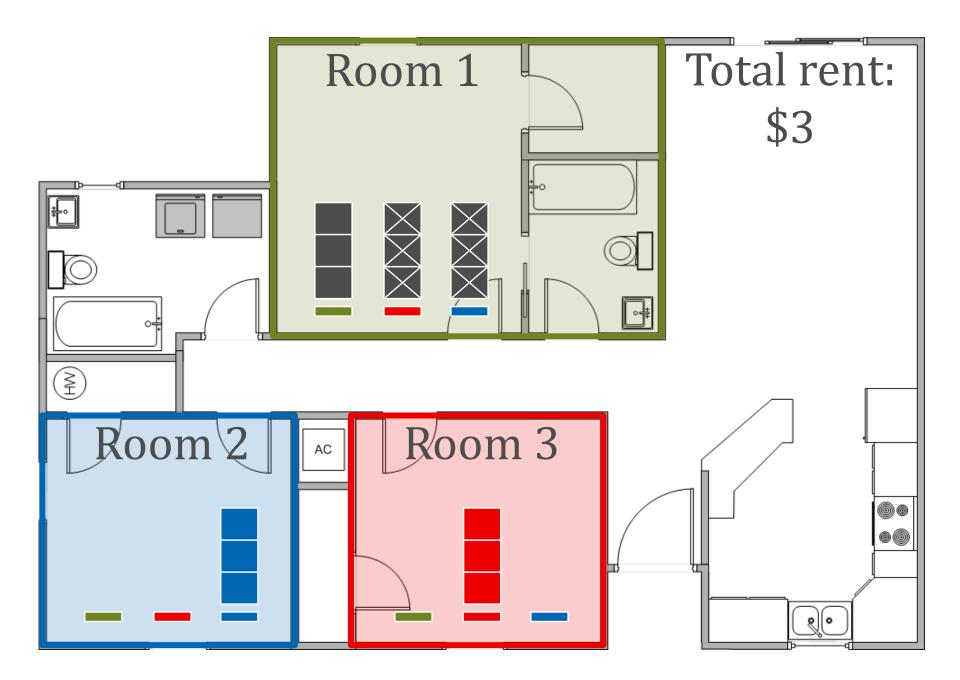
• We get the desired inequality because prices sum up to R

POLYNOMIAL-TIME ALGORITHM

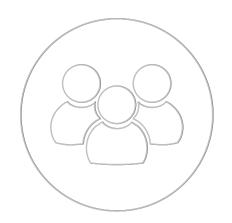
- Consider the algorithm that finds a welfaremaximizing assignment π , and then finds prices p that satisfy the EF constraint
- Theorem [Gal et al. 2017]: The algorithm always returns an EF solution, and can be implemented in polynomial time

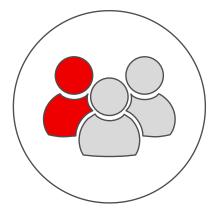
• Proof:

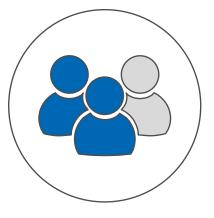
- We know that an EF solution (σ, p) exists, by Lemma 2 (π, p) is EF, so we would be able to find prices satisfying the EF constraint
- The first part is max weight matching, the second part is a linear program ■



OPTIMAL EF SOLUTIONS







Straw Man Solution

Max sum of utilities Subject to envy freeness

Maximin Solution

Max min utility Subject to envy freeness

Equitable solution

Min max difference in utils Subject to envy freeness

OPTIMAL EF SOLUTIONS

- Theorem [Gal et al. 2017]: The maximin and equitable solutions can be computed in polynomial time
- Theorem [Alkan et al. 1991]: The maximin solution is unique

Poll 1

Suppose that the values are

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$

What is the min utility under the maximin solution?

- 2/6 = 1/3 2/8 = 1/4
- 2/7 2/9

OPTIMAL EF SOLUTION

- Theorem [Gal et al. 2017]: The maximin solution is equitable, but not vice versa
- Rent division instance from Spliddit where the equitable solution is not maximin:

(2227	708	0 \
258	1378	1299
\1000	1000	935 /

• Maximin solution gives room *i* to player *i*, with prices and utilities

$$\left(1813\frac{1}{3},600\frac{1}{3},521\frac{1}{3}\right),\left(413\frac{2}{3},777\frac{2}{3},413\frac{2}{3}\right)$$

- The max difference in utilities is 364
- The following prices and utilities have the same max difference, but lower minimum utility:

$$\left(1570\frac{2}{3},721\frac{2}{3},642\frac{2}{3}\right),\left(656\frac{1}{3},656\frac{1}{3},292\frac{1}{3}\right)$$

CAVEAT: STRATEGYPROOFNESS

- Lemma 1 tells us that any EF solution is welfare maximizing
- Therefore, any EF solution is Pareto efficient
- But there is no rent division algorithm that is both EF and Pareto efficient [Green and Laffont 1979]
- However, strategic behavior is largely a nonissue in practice in the rent division domain

CAVEAT: NEGATIVE RENT

• Envy-freeness may require negative rent, as the following example shows:

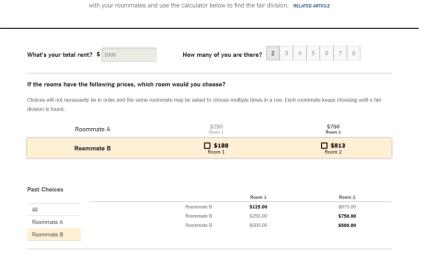
$$\begin{pmatrix} 36 & 34 & 30 & 0 \\ 31 & 36 & 33 & 0 \\ 34 & 30 & 36 & 0 \\ 32 & 33 & 35 & 0 \end{pmatrix}$$

- Whatever player *i* gets room 4 must pay 0, and the prices of the other rooms must be exactly his values to prevent envy
- Easy to verify that *i* can't be any of the players

WHICH MODEL IS BETTER?

- Advantages of quasi-linear utilities:
 - Preference elicitation is easy: Each player reports a single number in one shot
 - Can choose among EF solutions
- Disadvantage of quasi-linear utilities: does not correctly model real-world situations
 - I want the room but I really can't spend more than \$500 on rent

INTERFACES



Divide Your Rent Fairly

APRIL 28, 2014

When you're sharing an apartment with roommates, it can be a challenge to decide who takes which bedroom, and at what price. Sit down

NY TIMES (rental harmony)

https://www.nytimes.com/interactive/2014/science/rent-division-calculator.html

THE BASICS

ALICE'S EVALUATIONS

Alice, use the sliders or textboxes to place values on each room. Think of these values as bids: you will never pay more than what you bid, and in most cases you will pay less. However, your values must sum to the total monthly rent: \$1000. You can use the *rescale* button to automatically adjust your values to add up to the rent.

Spliddit (quasi-linear utilities)

http://www.spliddit.org/apps/rent