
ALGOSTRUTH JUSTICE
Fair	Division	III:	

Computational	Resources
Teachers:	Ariel	Procaccia	and	Alex	Psomas	(this	time)	

THE	ACTUAL	PROBLEM

• We	have	a	big	(cloud)	computing	center.
◦ The	computing	center	is	comprised	of	machines.
◦ A	machine	has	X	amount	of	CPU,	Y	amount	of	RAM,	
Z	amount	of	hard	drive	space,	runs	operating	
system	W,	etc etc

• People	submit	jobs	(i.e.	a	piece	of	code)	that	
they	want	to	execute.
◦ A	job	requires	(at	least)	some	job-specific	resources	
to	execute:	X	amount	of	CPU,	Y	amount	of	RAM,	
specific	operating	systems,	specific	libraries	
available	etc.

• This	computing	center	is	internal	(e.g.	used	
internally	by	FB	employees),	so	charging	users	
is	not	an	option.

OUR	OBJECTIVE

• We	want	to	allocate	the	resources	in	a	way	
that	is:

◦ Fair.
• For	this	talk	by	``fair’’	we	mean	proportional.
• Proportional	=	``better	than	1/I of	each	resource’’

◦ Efficient.
• In	order	to	improve	someone’s	utility,	you	have	to	
hurt	someone	else.

◦ Strategy-proof.
• A	user	should	not	be	able	to	benefit	by	lying	about	
the	amount	of	resources	she	needs.

STRATEGY-PROOF?

• Surprisingly	very	important!
• Some	anecdotal	evidence:

◦ One	of	Yahoo!’s	Hadoop	MapReduce	datacenters	
has	different	numbers	of	slots	for	map	and	reduce	

tasks.	A	user	discovered	that	the	map	slots	were	

contended,	and	therefore	launched	all	his	jobs	as	

long	reduce	phases,	which	would	manually	do	the	

work	that	MapReduce	does	in	its	map	phase.

◦ Big	search	company	provided	dedicated	machines	
for	jobs	only	if	the	users	could	guarantee	high	

utilization.	Users	would	sprinkle	their	code	with	

infinite	loops	to	artificially	inflate	utilization	levels!

THE	MODEL

• There	are	- users,	1 resources	and	a	single	
machine.

• Users	want	resources	in	fixed	proportions!
◦ If	you	need	1	CPU	and	2	GBs	RAM	to	run	a	task,	
then	getting	1	CPU	and	3GBs	RAM	is	the	same	
as	getting	1	CPU	and	2	GBs	RAM	(but	worse	
than	getting	(2,4)).

• RS = RS,U, RS,V, … , RS,X is	user	Y’s	demand	
vector.	

THE	MODEL

• The	utility	of	user	4 for	a	vector	of	resources	
89 = 89,<, 89,=, … , 89,? is
◦ @9 89 = max{ D ∈ ℝ: ∀ I ∈ J , 89,K ≥ D ⋅ N9,K}
◦ More	intuitively:	the	utility	of	an	agent	is	how	
many	times	her	demand	vector	``fits’’	in	the	
resource	vector	she	was	given.

EXAMPLE

9	CPUs 18	GB	RAM

12 = (1, 4)

18 = (3,1) 5

10

8

4

<2 = 2

<8 =
5
3

EXAMPLE

9	CPUs 18	GB	RAM

12 = (1, 4)

18 = (3,1) 5
5/3

8

2

=2 = 2

=8 =
5
3

POLL

How	much	utility	does	a	proportional	allocation	
guarantee? ???1. ;< = ;> = ;? = 10

3. ;< = 6, ;> = ;? = 30
2. ;< = 2, ;> = ;? = 10

60	CPUs 30	GB	RAM

L< = (2, 5)

L> = (2,1)

L? = (2,1)

CANDIDATE	#1:	ASSET	FAIRNESS

• ``1%	of	CPU	is	worth	the	same	as	1%	of	memory’’
• Players	have	the	same	budget.
• Example:	

◦ 30	CPUs,	30	GBs	RAM
◦ 1	CPU	is	worth	as	much	as	1	GB	RAM.
◦ PQ = 1,3 , PS = 1,1
◦ Agent	1	spends	1	+	3	=	4	per	task
◦ Agent 2 spends	1	+	1	=	2	per	task
◦ Let	Z be	the	number	of	tasks	of	agent	1,	and	[the	
number	of	tasks	of	agent	2.

◦ 4Z = 2[
◦ Z + [≤ 30 and	3Z + [≤ 30.

CANDIDATE	#1:	ASSET	FAIRNESS

• Solving	gives 7 = 6, ; = 12

• Agent	1:	(6, 18)
• Agent 2: 12, 12
• Is	there	a	problem?
• The	allocation	is	unfair.
• Agent	2	does	better	if	we	split	everything	
half	and	half.

CANDIDATE	#2:	CEEI

• Maximize	the	product	of	utilities.
• Example:

◦ 100	CPUs,	100	GBs	RAM
◦ GH = 16,1 , GK = 1,2
◦ Maximize LH ⋅ LK
◦ Give	everything	to	agent	1:	LH =

HRR
HS
, LK = 0

• Product	is	equal	to	zero

◦ Half	half:	LH =
VR
HS
, LK =

VR
K
, LH ⋅ LK ≈ 78

◦ Optimal	solution	gives	≈ (51,3) to	agent	1	and	≈
(49,97) to	agent	2.
• HRR

aH
≈ 3.2 tasks	to	agent	1	and	HVRR

aH
≈ 48.3 tasks	to	2.

• LH ⋅ LK ≈ 156

CANDIDATE	#2:	CEEI

• Agent	1	reports	567 = 16,8 .
• 567 = (16,8) is	a	symmetric	and	scaled	version	
of	5H = (1,2).

• Maximizing	the	product	is	a	scale	free	solution
◦ (1,1) gives	you	the	same	stuff	as	(5,5)

• Agent 1 gets H
O
of	the	CPUs	and	agent	2	gets	H

O
of	

the	RAM.

• Agent 1 can now	execute	(100 ⋅ H
O
)/16 ≈ 4.2

tasks.
◦ Maximizing	the	product	is	not	strategyproof!

DOMINANT	RESOURCE	FAIRNESS	

(DRF)

• Maximize	utilities	subject	to	equal	dominant	
shares.

◦ Dominant	share	of	agent	G =	amount	of	
dominant	resource.

◦ Dominant	resource	=	resource	for	which	the	
agent’s	task	requires	the	largest	fraction	of	total	

availability.	

NO = (1, 4)

Dominant	resource

Machine	=	(9,18)

DRF
$% = (1, 4)

$, = (3,1)

• In	order	to	get	utilities	;% and	;,,	we’ll	have	to	use	up	;% + 3;,
CPUs	and	4;% + ;, GBs	RAM.	

• Dominant	shares	are	 L
%M
;% and	

N
O
;,.

• Constraints:
• ;% + 3;, ≤ 9
• 4;% + ;, ≤ 18
• L
%M
;% =

N
O
;,

• Objective:	Maximize	;% + ;, (or	just	;%,	or	just	;,)
• Solution:	;% = 3 and	;, = 2.

Machine	=	(9,18)

DRF

9	CPUs 18	GB	RAM

01 = (1, 4)

07 = (3,1)
6

2

12

3

;1 = 3

;7 = 2

Dominant	share	=	 E
1F
⋅ 3 = H

I
⋅ 2 = 7

H

DRF:	EASIER	THAN	IT	LOOKS

• Simplify	demands.
◦ <=,? =

AB,C
DC
.	So,	<F,F =

F

G
,	<F,H =

I

FJ
,	…

◦ New	demand:	M=,? =
NB,C

OPQ
CR

NB,CR
.

• So,	MF,F =
F/G

I/FJ
= 1/2,	MF,H = 1,	MH,F = 1,	MH,H = 1/6

• Simplified	linear	program.
◦ Maximize	\ (dominant	share)
◦ Subject	to:	∀f, ∑= \ ⋅ M=,? ≤ 1

MF = (1, 4)

MH = (3,1)

Machine	=	(9,18)

DRF:	EASIER	THAN	IT	LOOKS

• 0 = 2
345
6

∑8 98,6

◦ In	the	example:	,	D2 = (1/2,	 1),	DJ = (1,	1/6)

◦ 0 = 2
345{ 9M,MN 9O,M , 9M,ON 9O,O}

= J
Q

• Agent	1	gets	2/3	of	resource	2,	agent	2	gets	
2/3	of	resource	1.

• Normalized	utilities:	^2 = ^J =
J
Q
= 0 .	

PROPERTIES	OF	DRF
• Efficient

◦ In	order	to	improve	someone’s	utility,	you	have	
to	hurt	someone	else.

◦ Proof:	maximizes	utilities.

PROPERTIES	OF	DRF

• “Fair”
◦ Lemma:	DRF	is	proportional,	i.e.	utility	of	agent	
@ is	at	least	her	utility	for	1/D of	the	resources.

◦ Proof:
◦ D ≥ max

H
∑J KJ,H:	the	RHS	is	maximized	when	

every	term	of	the	sum	is	1.

◦ QJ = S =
T

UVW
X

∑Y ZY,X
≥

T

[

◦ Lemma:	DRF	is	envy-free.

PROPERTIES	OF	DRF

• Truthful.
◦ Proof:
◦ Say	report	was	:;< instead	of	:;.	

◦ @ = B

CDE
F

∑
H IH,F

, @< =
B

CDE
F

∑
H IH,F

K .

◦ If	@< ≤ @, then	∀N, @< ⋅ :;,P
< ≤ @ ⋅ 1 = @ ⋅ :;,PH

∗,

where	N;
∗ is	the	dominant	resource.	

◦ So,	no	improvement	in	V’s	utility.

TRUTHFULNESS	PROOF	CONTINUED

• Otherwise	78 > 7.	Let	;<,> be	the	amount	of	

resource	G allocated	to	player	L when	reporting	N<,	

and	;<,>
8 when	reporting	N<

8.

• Let	G be	a	resource	that	was	fully	allocated	in	;.
;<,> = 1 − ∑ST< ;S,>

= 1 − ∑ST< 7 ⋅ NS,>

> 1 − ∑STV 7
8 ⋅ NS,>

= 1 − ∑ST< ;S,>
8

≥ ;<,>
8

KALAI-SMORODINSKY BARGAINING	
SOLUTION

23 = (1, 4)

2: = (3,1)

Machine	=	(9,18)

D3

D:

4.5

3

D3 + 3D: ≤ 9

4D3 + D: ≤ 18

BEYOND	DRF

• Zero	demands,	weights.
◦ Easy-ish to	fix

• Indivisible	tasks!	[Parkes,	Procaccia,	Shah	
2012].
◦ If	you	need	1	CPU	and	1	GB	RAM	per	task,	
getting	1.5	of	each	is	the	same	as	getting	1	of	
each.

◦ Under	indivisibilities	you	can’t	have	efficiency,	
truthfulness	and	proportionality	at	the	same	
time.

INDIVISIBLE	TASKS:	A	LOWER	BOUND

• Proportionality,	efficiency	and	truthfulness	are	
incompatible.
◦ Proof:

◦ 2	agents,	1	resource.	JK = JM =
K

M
+ O.

◦ Efficiency	→ someone	gets	a	task.	Wlog it’s	agent	1.

◦ J′M =
K

M
◦ Proportionality	→agent	2	must	get	half	the	
resource.

◦ Efficiency	→ 2	gets	the	other	half	as	well.	(useless	
for	1)

◦ Agent	2	gained	by	lying.

BEYOND	DRF

• Zero	demands,	weights.
◦ Easy-ish to	fix

• Indivisible	tasks! [Parkes,	Procaccia,	Shah	2012].
◦ If	you	need	1	CPU	and	1	GB	RAM	per	task,	getting	1.5	of	each	
is	the	same	as	getting	1	of	each.

◦ Under	indivisibilities	you	can’t	have	efficiency,	truthfulness	
and	proportionality	at	the	same	time.

• Multiple	machines!
◦ Assumption:	under-reporting	gives	zero	utility.	(very	well	
motivated)

◦ There	exists	a	randomized	mechanism	(extension	of	the	
Kalai-Smorodinsky interpretation)	that	satisfies	all	the	
properties	(ex-ante).	[Friedman,	Ghodsi,	P	2014].

• Huge	assumption:	one	shot	game!
◦ If	we	have	a	solution	for	time	t	and	a	new	job	arrives	at	time	
t+1,	how	do	we	get	to	a	new	solution?

BACK	TO	THE	DRAWING	BOARD:
DYNAMIC	FAIR	DIVISION

• Agents	arrive	over	time.
• When	an	agent	arrives	we	give	her	
resources.

• No	reallocation	allowed	[Kash,	Procaccia,	
Shah	2013].

• When	an	agent	arrives	we	can	take	
resources	from	a	fixed	number	of	agents	
[Friedman,	P,	Vardi 2015,2017].
◦ Optimize	the	``fairness	ratio’’:	
minZ

[\]^ _^̀
``abcde deefgdZafh dZ Z”

REFERENCES

• Dominant	Resource	Fairness:	Fair	Allocation	of	
Multiple	Resource	Types.	Ghodsi,	Zaharia,	
Hindman,	Konwinski,	Shenker,	Stoica 2011

• Beyond	Dominant	Resource	Fairness:	
Extensions,	Limitations,	and	Indivisibilities.	
Parkes,	Procaccia,	Shah	2012

• No	agent	left	behind:	Dynamic	fair	division	of	
multiple	resources.	Kash,	Procaccia,	Shah	2013

• Strategyproof Allocation	of	Discrete	Jobs	on	
Multiple	Machines.	Friedman,	Ghodsi,	Psomas
2014

• Controlled	Dynamic	Fair	Division. Friedman,
Psomas, Vardi 2017

