

Cryptocurrencies II: Selfish Mining

Teachers: Ariel Procaccia and Alex Psomas (this time)

- Last time:
 - Basic concepts
 - Double spend attack
- Today: Block withholding attacks (Selfish mining)
 - Get a taste of some AGT works on cryptocurrencies

SETUP

- Each miner i has mining power p_i
- $\sum_{i=1}^{n} p_i = 1$
- Each miner chooses a chain to mine on top of, and find a block after a random time *t* distributed (according to an exponential random variable with mean p_i^{-1})
- Pools behave as a single agent with mining power equal to the sum of participants
- The expected **reward** of *i* is the (expected) fraction of blocks that *i* mined out of the total number of blocks *in the longest chain*

LONGEST CHAIN IN THIS WORLD

- Whenever selected to build a block, point to the node "furthest from the root"
 - Break ties in favor of the one you hear first
- Broadcast to the whole network

Intuition [Nakamoto 08, the entire Bitcoin community]

- If all other miners follow the longest chain protocol
- And you have <50% of the mining power
- Your best response is to also follow the longest chain protocol

WHY?

- Intuition:
- You only get rewards if your blocks are included in the longest chain
- The rest of the network has more power than you, so if you try to mine you own private chain you'll never catch up
- Nakamoto even has a correct random walk analysis
 - Doesn't consider more clever deviations

SELFISH MINE: IDEA

- Everyone mines on top of block *B*
- Hide a valid block *B_s*
- Everyone else is wasting resources trying to extend *B*, while you extend *B*_s without any competition

<u>Theorem</u> [Eyal-Sirer 14]

If you have >33% of the mining power, following the longest chain protocol is **not** a best response to all others following the longest chain protocol

SCENARIO 1: THE OTHERS CATCH UP

Current public longest branch

- Some honest miners will try extend your block because they heard about it first (natural network delays)
- Basically a toss-up

SCENARIO 2: YOU MINE A NEW ONE

Try to make your private chain even longer!

SCENARIO 2: YOU MINE A NEW ONE

SCENARIO 2: YOU MINE A NEW ONE

• <u>Intuition</u>: The effort of honest miners for creating \hat{B} is wasted!

TOY ANALYSIS

- LuckyLongestChain:
 - Whenever selected to build a block, point to the longest chain node, and break ties in favor of SelfishMiner.
 - Always broadcast your block.
- LuckySelfishMine
 - Whenever selected to build a block, point to the longest chain node, and break ties in favor of SelfishMiner.
 - Broadcast your block iff there is another node of the same distance from the root

TOY ANALYSIS

- LuckySelfishMine is strictly better than LuckyLongestChain, if everyone else is playing LuckyLongestChain.
 - With x fraction of the mining power it gives x/(1 x) fraction of the blocks (instead of x)
- Intuition:
 - Every block is on the longest chain
 - Every block "negates" one other block by the honest people, effectively reducing the overall computational power that goes in actual block making
- We'll show morally the same result for real LongestChain

SELFISH MINE RECAP

- Maintain a private chain
- If *private chain* = 0, and others find block try to extend that
- If *private chain* = 1 and others find block, publish *private chain* and try to extend it
- If *private chain* = 2 and others find block, publish *private chain* and restart
- If *private chain* > 2 and others find block, publish first unpublished block of *private chain*

MODEL AS A 2 PLAYER GAME

- Attacker has α fraction of the computational power
- Honest miners have a 1α fraction
- γ = fraction of honest miners who break tie in favor of the attacker when there are two branches of equal length
- Goal: show that the selfish mining attack leads to the attacker having more than an α fraction of the blocks in the final chain

- State 0: no branches
- State 0': two public branches of length 1
- State *i*: private chain is *i* blocks long
- From 0' to 0:
 - Attacker makes a public block with frequency α
 - Honest miners that follow attacker make a public block with frequency $(1 \alpha)\gamma$
 - Honest miners not following attacker make a public block with frequency $(1 \alpha)(1 \gamma)$

ANALYSIS

- $p_0 = (1 \alpha)p_1 + (1 \alpha)p_2 + (1 \alpha)p_0$
- $p_{0'} = (1 \alpha)p_1$
- $\alpha p_1 = (1 \alpha)p_2$
- $\forall k \ge 2$: $\alpha p_k = (1 \alpha) p_{k+1}$
- $\sum_{k=0}^{\infty} p_k + p_{0'} = 1$

ANALYSIS

•
$$p_0 = \frac{\alpha - 2\alpha^2}{\alpha(2\alpha^3 - 4\alpha^2 + 1)}$$

• $\forall k \ge 2, p_k = \left(\frac{\alpha}{1 - \alpha}\right)^{k-1} \frac{\alpha - 2\alpha^2}{2\alpha^3 - 4\alpha^2 + 1}$
• $p_{0'} = \frac{(1 - \alpha)(\alpha - 2\alpha^2)}{1 - 4\alpha^2 + 2\alpha^3}$
• $p_1 = \frac{\alpha - 2\alpha^2}{2\alpha^3 - 4\alpha^2 + 1}$

- a) Two branches of length 1, attacker finds a block
 - Attacker makes revenue of 2
 - $r_{att} += 2 \cdot p_{0'} \cdot \alpha$
- b) Two branches of length 1, honest miners find a block on top of attacker's block
 - Attacker and honest make 1 each
 - $r_{att} += p_{0'} \cdot \gamma \cdot (1-\alpha), r_{hon} += p_{0'} \cdot \gamma \cdot (1-\alpha)$
- c) Two branches of length 1, honest miners find a block on top of honest block
 - Honest make revenue of 2

•
$$r_{hon} += p_{0'} \cdot (1-\gamma) \cdot (1-\alpha)$$

- d) No private branch, honest find block
 - Honest make revenue of 1
 - $r_{hon} += p_0 \cdot (1-\alpha)$
- e) Lead is 2. Honest find block; attacker publishes private chain
 - Attacker makes revenue of 2
 - $r_{att} += p_2 \cdot (1-\alpha) \cdot 2$
- f) Lead more than 2. Honest find block; attacker publishes one block
 - Attacker makes revenue of 1
 - $r_{att} += \Pr[lead > 2] \cdot (1 \alpha)$

- Protocol adjusts difficulty so that there is a block every ~10 mins
- So, total revenue for attacker is

$$\frac{r_{att}}{r_{att} + r_{hon}} = \frac{\alpha(1-\alpha)^2 (4\alpha + \gamma(1-2\alpha)) - \alpha^3}{1 - \alpha(1 + (2-\alpha)\alpha)}$$

<u>*Observation:*</u> Selfish mining is profitable when $\frac{1-\gamma}{3-2\gamma} < \alpha < \frac{1}{2}$

Fig. 3: For a given γ , the threshold α shows the minimum power selfish mining pool that will trump the honest protocol. The current Bitcoin protocol allows $\gamma = 1$, where Selfish-Mine is always superior. Even under unrealistically favorable assumptions, the threshold is never below 1/3.

KIAYIAS, KOUTSOUPIAS, KYROPOULOU,TSELEKOUNIS 16

- Study strategic considerations regarding block withholding
- When is honest/longest chain behavior a Nash equilibrium?

SETUP [KKKT 16]

- *n* players/miners
- p_i = Probability that miner solves puzzle • $\sum_i p_i = 1$
- d = Depth of the game
 - Payoffs count only after *d* blocks
 - Mostly $d = \infty$
- r*= reward of mining a block
 - Normalized to 1

SETUP

- Public state:
 - A rooted tree of blocks
 - Every node is labeled by one of the players (the miner)
 - Every level has at most one block labeled by player *i* (no reason for *i* to mine two)
- Private state of player *i*:
 - Same as public state, but might have some extra blocks labeled by *i*
 - Public state is a subtree

TWO MODELS

1. Immediate release model (today)

 Whenever a miner succeeds in mining a block, he releases it immediately, and all miners can continue from the newly mined block.

2. Strategic release model

- Whenever a miner succeeds in mining a block, it becomes common knowledge. The miner can decide to postpone its release; others cannot extend it until its public, but know it exists
- Of course, not meant to be realistic, but a stepping stone to the incomplete information game

STRATEGIES

- Strategy: Two functions (μ_i, ρ_i)
 - Mining function μ_i selects a block from the public state to mine
 - Release function ρ_i which is a (perhaps empty) private part of the player's state which is added to the public state.
- FRONTIER/honest strategy: release any mined block immediately and select to mine one of the deepest blocks

PHASES

- Game is played in phases
- In phase *t* player *i* is selected with probability p_i to extend the block indicated by μ_i
- Then everyone adds information to the public tree according to their release functions
- Repeat

PAYMENTS

• A miner makes revenue of 1 for *every* node in the *first* path to make it to depth *d*

 Once B₅ is paid, no one tries to extend B₃ or B₄

- Want to see when FRONTIER is a best response to everyone else playing FRONTIER
- Problem reduces to a two player game
- Miner 2 with computational power 1 p plays honestly/FRONTIER
- Miner 1 with computational power *p* best responds to miner 1
- Public state is a tree of width at most 2: two long branches with lengths (*a*, *b*)
 - a =length of branch where miner 1 mines
 - b =length of branch where miner 2 mines

- State could be (0,0)
- If b > 0, then since Miner 2 is extending the longest chain, b > a
 - Eg (3,1) never happens

- Mining states (M): both mine their own chain
- Capitulation states (C): miner 1 gives up
- Winning states (W): miner 2 switches (*a* > *b*)

- g_k(a, b): expected gain of miner 1 when the branch of the honest miner in the execution tree is extended by k levels, when starting from an (a, b) tree
 - Intuitively should not depend on (*a*, *b*)

•
$$g^* =$$
 expected gain per level

•
$$g^* = \frac{g_k(a,b) - g_{k'}(a,b)}{k - k'}$$
, for large k, k' and all a, b

•
$$g_k(a,b) = k \cdot g^* + \phi(a,b)$$

- $\phi(a, b) = \lim_{k \to \infty} g_k(a, b) k \cdot g^* = \text{advantage of miner}$ 1 for being in state (a, b)
- Alternatively, $\phi(a, b)$ is the expected value of $g_k(a, b) k \cdot g^*$ until (0,0) is reached
- Objective of miner 1: maximize g^*

- For $(a, b) \in M$: with probability p we go to (a + 1, b), otherwise to (a, b + 1)
- For (a, b) ∈ C: miner 1 abandons branch.
 New state (0, s)

• Not necessarily (0,0)

- For (a, b) ∈ W: miner 2 abandons branch.
 New state (0,0)
- Strategy = pair (*M*, *s*) where (0, *s*) is the state miner 1 jumps to when giving up

• Define $g_k(a, b)$ recursively

• Similar for ϕ $\phi(a, b)$

$$= \begin{cases} \phi(0,0) + a - g^*, & \text{if } a = b + 1 \\ \max\{\max_{s} \phi(0,s), p\phi(a+1,b) + (1-p)\phi(a,b+1) - (1-p)g^*\} \end{cases}$$

• $\phi(0,0)=0$

<u>**Theorem:</u>** FRONTIER is not a best response for $p \ge 0.455$ </u>

- **Proof:**
- Say d = 3
- *M* = {(0,0), (0,1), (1,1), (1,2), (2,2)}, *s* = 1
 Capitulate in (*a*, *b*), *b* ≥ 3, and jump to (0,1)
- Need to confirm that $g^* \ge p$
 - 1. Compute $\phi(a, b)$
 - $\phi(0,0) = 0, \phi(0,1) = (g^* p)/(1 p), \phi(2,2) = \cdots$
 - 2. It must be that $\phi(a, b) \ge \phi(0, 1)$ for $(a, b) \in M$
 - 3. Picking $g^* = \frac{p^2(2+2p-5p^2+2p^3)}{1-p^2+2p^3-p^4}$ makes everything hold for all $p \ge 0.455$

<u>*Theorem:*</u> FRONTIER is a NE if and only if $p ≤ h_0$, where $h_0 \in [0.361, 0.455]$

Corollary: Frontier is a NE if $p \le 0.361$

Proof sketch:

Starting at any state (*a*, *b*), one of the two miners will give up.

1. Bound the probability that miner 1 wins this race starting from state (a, b)

$$\circ \quad r(a,b) \le \left(\frac{p}{1-p}\right)^{1+b-a}$$

- 2. Bound the difference of ϕ between different states as a function of the probability of winning
- $\phi(a, b)$ is non-decreasing in a
- 3. Using all of the above, get an upper bound on $\phi(0,1)$ as a function of p
 - $\phi(0,1)$ can't be positive, so solve for p

STRATEGIC RELEASE GAME

<u>*Theorem:*</u> FRONTIER is a NE when a miner *i* has relative computational power $p_i \leq 0.308$

Major open direction:

• Do these results extend to incomplete information games?

NEXT TIME

- Transaction fees
- Incentives in mining pools
- Beyond Proof of Work