

Cryptocurrencies II: Selfish Mining

Teachers: Ariel Procaccia and Alex Psomas (this time)

- Last time:
- Basic concepts
- Double spend attack
- Today: Block withholding attacks (Selfish mining)
- Get a taste of some AGT works on cryptocurrencies

SETUP

- Each miner i has mining power p_{i}
- $\sum_{i=1}^{n} p_{i}=1$
- Each miner chooses a chain to mine on top of, and find a block after a random time t distributed (according to an exponential random variable with mean p_{i}^{-1})
- Pools behave as a single agent with mining power equal to the sum of participants
- The expected reward of i is the (expected) fraction of blocks that i mined out of the total number of blocks in the longest chain

LONGEST CHAIN IN THIS WORLD

- Whenever selected to build a block, point to the node "furthest from the root"
- Break ties in favor of the one you hear first
- Broadcast to the whole network

Intuition [Nakamoto 08, the entire Bitcoin community]

- If all other miners follow the longest chain protocol
- And you have $<50 \%$ of the mining power
- Your best response is to also follow the longest chain protocol

WHY?

- Intuition:
- You only get rewards if your blocks are included in the longest chain
- The rest of the network has more power than you, so if you try to mine you own private chain you'll never catch up
- Nakamoto even has a correct random walk analysis
- Doesn't consider more clever deviations

SELFISH MINE: IDEA

- Everyone mines on top of block B
- Hide a valid block B_{S}
- Everyone else is wasting resources trying to extend B, while you extend B_{S} without any competition

Theorem [Eyal-Sirer 14]
If you have $>33 \%$ of the mining power, following the longest chain protocol is not a best response to all others following the longest chain protocol

SCENARIO 1: THE OTHERS CATCH UP

- Some honest miners will try extend your block because they heard about it first (natural network delays)
- Basically a toss-up

SCENARIO 2: YOU MINE A NEW ONE

Try to make your private chain even longer!

SCENARIO 2: YOU MINE A NEW ONE

SCENARIO 2: YOU MINE A NEW ONE

Current public longest branch

- Intuition: The effort of honest miners for creating \hat{B} is wasted!

TOY ANALYSIS

- LuckyLongestChain:
- Whenever selected to build a block, point to the longest chain node, and break ties in favor of SelfishMiner.
- Always broadcast your block.
- LuckySelfishMine
- Whenever selected to build a block, point to the longest chain node, and break ties in favor of SelfishMiner.
- Broadcast your block iff there is another node of the same distance from the root

TOY ANALYSIS

- LuckySelfishMine is strictly better than LuckyLongestChain, if everyone else is playing LuckyLongestChain.
- With x fraction of the mining power it gives $x /(1-$ x) fraction of the blocks (instead of x)
- Intuition:
- Every block is on the longest chain
- Every block "negates" one other block by the honest people, effectively reducing the overall computational power that goes in actual block making
- We'll show morally the same result for real LongestChain

SELFISH MINE RECAP

- Maintain a private chain
- If private chain $=0$, and others find block try to extend that
- If private chain $=1$ and others find block, publish private chain and try to extend it
- If private chain $=2$ and others find block, publish private chain and restart
- If private chain >2 and others find block, publish first unpublished block of private chain

MODEL AS A 2 PLAYER GAME

- Attacker has α fraction of the computational power
- Honest miners have a $1-\alpha$ fraction
- $\gamma=$ fraction of honest miners who break tie in favor of the attacker when there are two branches of equal length
- Goal: show that the selfish mining attack leads to the attacker having more than an α fraction of the blocks in the final chain

- State 0: no branches
- State 0': two public branches of length 1
- State i : private chain is i blocks long
- From 0' to 0:
- Attacker makes a public block with frequency α
- Honest miners that follow attacker make a public block with frequency $(1-\alpha) \gamma$
- Honest miners not following attacker make a public block with frequency $(1-\alpha)(1-\gamma)$

ANALYSIS

- $p_{0}=(1-\alpha) p_{1}+(1-\alpha) p_{2}+(1-\alpha) p_{0}$
- $p_{0^{\prime}}=(1-\alpha) p_{1}$
- $\alpha p_{1}=(1-\alpha) p_{2}$
- $\forall k \geq 2: \alpha p_{k}=(1-\alpha) p_{k+1}$
- $\sum_{k=0}^{\infty} p_{k}+p_{0^{\prime}}=1$

ANALYSIS

- $p_{0}=\frac{\alpha-2 \alpha^{2}}{\alpha\left(2 \alpha^{3}-4 \alpha^{2}+1\right)}$
- $\forall k \geq 2, p_{k}=\left(\frac{\alpha}{1-\alpha}\right)^{k-1} \frac{\alpha-2 \alpha^{2}}{2 \alpha^{3}-4 \alpha^{2}+1}$
- $p_{0^{\prime}}=\frac{(1-\alpha)\left(\alpha-2 \alpha^{2}\right)}{1-4 \alpha^{2}+2 \alpha^{3}}$
- $p_{1}=\frac{\alpha-2 \alpha^{2}}{2 \alpha^{3}-4 \alpha^{2}+1}$

REVENUE

a) Two branches of length 1 , attacker finds a block

- Attacker makes revenue of 2
- $r_{a t t}+=2 \cdot p_{0^{\prime}} \cdot \alpha$
b) Two branches of length 1, honest miners find a block on top of attacker's block
- Attacker and honest make 1 each
- $r_{\text {att }}+=p_{0^{\prime}} \cdot \gamma \cdot(1-\alpha), r_{\text {hon }}+=p_{0^{\prime}} \cdot \gamma \cdot(1-\alpha)$
c) Two branches of length 1, honest miners find a block on top of honest block
- Honest make revenue of 2
- $r_{\text {hon }}+=p_{0^{\prime}} \cdot(1-\gamma) \cdot(1-\alpha)$

REVENUE

d) No private branch, honest find block

- Honest make revenue of 1

$$
\text { - } \quad r_{h o n}+=p_{0} \cdot(1-\alpha)
$$

e) Lead is 2 . Honest find block; attacker publishes private chain

- Attacker makes revenue of 2
- $\quad r_{a t t}+=p_{2} \cdot(1-\alpha) \cdot 2$
f) Lead more than 2. Honest find block; attacker publishes one block
- Attacker makes revenue of 1
- $\quad r_{a t t}+=\operatorname{Pr}[$ lead $>2] \cdot(1-\alpha)$

REVENUE

- Protocol adjusts difficulty so that there is a block every ~10 mins
- So, total revenue for attacker is
$\frac{r_{a t t}}{r_{a t t}+r_{\text {hon }}}=\frac{\alpha(1-\alpha)^{2}(4 \alpha+\gamma(1-2 \alpha))-\alpha^{3}}{1-\alpha(1+(2-\alpha) \alpha)}$

Observation: Selfish mining is profitable when

$$
\frac{1-\gamma}{3-2 \gamma}<\alpha<\frac{1}{2}
$$

REVENUE

Fig. 3: For a given γ, the threshold α shows the minimum power selfish mining pool that will trump the honest protocol. The current Bitcoin protocol allows $\gamma=1$, where Selfish-Mine is always superior. Even under unrealistically favorable assumptions, the threshold is never below $1 / 3$.

KIAYIAS, KOUTSOUPIAS, KYROPOULOU,TSELEKOUNIS 16

- Study strategic considerations regarding block withholding
- When is honest/longest chain behavior a Nash equilibrium?

SETUP [KKKT 16]

- n players/miners
- $p_{i}=$ Probability that miner solves puzzle - $\sum_{i} p_{i}=1$
- $d=$ Depth of the game
- Payoffs count only after d blocks
- Mostly $d=\infty$
- $r^{*}=$ reward of mining a block
- Normalized to 1

SETUP

- Public state:
- A rooted tree of blocks
- Every node is labeled by one of the players (the miner)
- Every level has at most one block labeled by player i (no reason for i to mine two)
- Private state of player i :
- Same as public state, but might have some extra blocks labeled by i
- Public state is a subtree

TWO MODELS

1. Immediate release model (today)

- Whenever a miner succeeds in mining a block, he releases it immediately, and all miners can continue from the newly mined block.

2. Strategic release model

- Whenever a miner succeeds in mining a block, it becomes common knowledge. The miner can decide to postpone its release; others cannot extend it until its public, but know it exists
- Of course, not meant to be realistic, but a stepping stone to the incomplete information game

STRATEGIES

- Strategy: Two functions $\left(\mu_{i}, \rho_{i}\right)$
- Mining function μ_{i} selects a block from the public state to mine
- Release function ρ_{i} which is a (perhaps empty) private part of the player's state which is added to the public state.
- FRONTIER/honest strategy: release any mined block immediately and select to mine one of the deepest blocks

PHASES

- Game is played in phases
- In phase t player i is selected with probability p_{i} to extend the block indicated by μ_{i}
- Then everyone adds information to the public tree according to their release functions
- Repeat

PAYMENTS

- A miner makes revenue of 1 for every node in the first path to make it to depth d

- Once B_{5} is paid, no one tries to extend B_{3} or B_{4}

IMMEDIATE RELEASE GAME

- Want to see when FRONTIER is a best response to everyone else playing FRONTIER
- Problem reduces to a two player game
- Miner 2 with computational power 1 - p plays honestly/FRONTIER
- Miner 1 with computational power p best responds to miner 1
- Public state is a tree of width at most 2: two long branches with lengths (a, b)
- $a=$ length of branch where miner 1 mines
- $b=$ length of branch where miner 2 mines

IMMEDIATE RELEASE GAME

This never happens

IMMEDIATE RELEASE GAME

- State could be $(0,0)$
- If $b>0$, then since Miner 2 is extending the longest chain, $b>a$
- Eg $(3,1)$ never happens

IMMEDIATE RELEASE GAME

- Mining states (M): both mine their own chain
- Capitulation states (C): miner 1 gives up
- Winning states (W): miner 2 switches $(a>b)$

IMMEDIATE RELEASE GAME

- $g_{k}(a, b)$: expected gain of miner 1 when the branch of the honest miner in the execution tree is extended by k levels, when starting from an (a, b) tree
- Intuitively should not depend on (a, b)
- $g^{*}=$ expected gain per level
- $g^{*}=\frac{g_{k}(a, b)-g_{k^{\prime}}(a, b)}{k-k^{\prime}}$,for large k, k^{\prime} and all a, b
- $g_{k}(a, b)=k \cdot g^{*}+\phi(a, b)$
- $\phi(a, b)=\lim _{k \rightarrow \infty} g_{k}(a, b)-k \cdot g^{*}=$ advantage of miner 1 for being in state (a, b)
- Alternatively, $\phi(a, b)$ is the expected value of $g_{k}(a, b)-$ $k \cdot g^{*}$ until $(0,0)$ is reached
- Objective of miner 1: maximize \boldsymbol{g}^{*}

IMMEDIATE RELEASE GAME

- For $(a, b) \in M$: with probability p we go to ($a+1, b$), otherwise to $(a, b+1)$
- For $(a, b) \in C$: miner 1 abandons branch. New state ($0, s$)
- Not necessarily $(0,0)$
- For $(a, b) \in W$: miner 2 abandons branch. New state $(0,0)$
- Strategy = pair (M, s) where $(0, s)$ is the state miner 1 jumps to when giving up

IMMEDIATE RELEASE GAME

- Define $g_{k}(a, b)$ recursively

$$
\begin{aligned}
& g_{k}(a, b) \\
& =\{\begin{array}{c}
\begin{array}{c}
g_{k-1}(0,0)+a, \text { if } a=b+1
\end{array} \\
\max \{\underbrace{\left.\max _{s=0, \ldots, b-1}\left\{g_{k}(0, s)\right\}, p g_{k}(a+1, b)+(1-p) g_{k-1}(a, b+1)\right\}}_{\text {Give up }}
\end{array} \underbrace{\underbrace{2}}_{\text {Don't give up }}
\end{aligned}
$$

- Similar for ϕ
$\phi(a, b)$
$=\left\{\begin{array}{c}\phi(0,0)+a-g^{*}, \text { if } a=b+1 \\ \max \left\{\max _{s} \phi(0, s), p \phi(a+1, b)+(1-p) \phi(a, b+1)-(1-p) g^{*}\right\}\end{array}\right.$
- $\phi(0,0)=0$

IMMEDIATE RELEASE GAME

Theorem: FRONTIER is not a best response for $p \geq 0.455$

Proof:

- Say $d=3$
- $M=\{(0,0),(0,1),(1,1),(1,2),(2,2)\}, s=1$
- Capitulate in $(a, b), b \geq 3$, and jump to $(0,1)$
- Need to confirm that $g^{*} \geq p$

1. Compute $\phi(a, b)$

- $\phi(0,0)=0, \phi(0,1)=\left(g^{*}-p\right) /(1-p), \phi(2,2)=\cdots$

2. It must be that $\phi(a, b) \geq \phi(0,1)$ for $(a, b) \in \mathrm{M}$
3. Picking $g^{*}=\frac{p^{2}\left(2+2 p-5 p^{2}+2 p^{3}\right)}{1-p^{2}+2 p^{3}-p^{4}}$ makes everything hold for all $p \geq 0.455$

IMMEDIATE RELEASE GAME

Theorem: FRONTIER is a NE if and only if $p \leq$ h_{0}, where $h_{0} \in[0.361,0.455]$

Corollary: Frontier is a NE if $p \leq 0.361$

IMMEDIATE RELEASE GAME

Proof sketch:

Starting at any state (a, b), one of the two miners will give up.

1. Bound the probability that miner 1 wins this race starting from state (a, b)

$$
\text { - } r(a, b) \leq\left(\frac{p}{1-p}\right)^{1+b-a}
$$

2. Bound the difference of ϕ between different states as a function of the probability of winning

- $\phi(a, b)$ is non-decreasing in a

3. Using all of the above, get an upper bound on $\phi(0,1)$ as a function of p

- $\phi(0,1)$ can't be positive, so solve for p

STRATEGIC RELEASE GAME

Theorem: FRONTIER is a NE when a miner i has relative computational power $p_{i} \leq 0.308$

Major open direction:

- Do these results extend to incomplete information games?

NEXT TIME

- Transaction fees
- Incentives in mining pools
- Beyond Proof of Work

