

#### Social Networks II: Influence Maximization

Teachers: Ariel Procaccia (this time) and Alex Psomas

# MOTIVATION

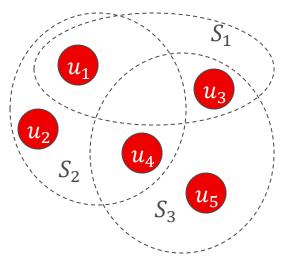
- Firm is marketing a new product
- Collect data on the social network
- Choose set *S* of early adopters and market to them directly
- Customers in *S* generate a cascade of adoptions
- **Question:** How to choose *S*?

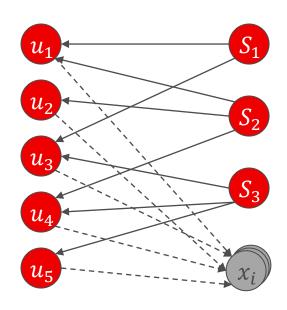
# **INFLUENCE FUNCTIONS**

- Assume: finite graph, progressive process
- Fixing a cascade model, define influence function
- f(S) = expected #active nodes at the end of the process starting with seed nodes S
- Maximize f(S) over sets S of size k
- Theorem [Kempe et al. 2003]: Under the general cascade model, influence maximization is NP-hard to approximate to a factor of  $n^{1-\epsilon}$  for any  $\epsilon > 0$

# **PROOF OF THEOREM**

- SET COVER: subsets  $S_1, ..., S_m$  of  $U = \{u_1, ..., u_t\}$ ; cover of size k?
- Bipartite graph:  $u_1, ..., u_t$  on one side,  $S_1, ..., S_m$  and  $x_1, ..., x_T$  for  $T = t^c$  on the other
- $u_i$  becomes active if  $S_j \ni u_i$  is active
- $x_j$  becomes active if  $u_1, \dots, u_t$  are active
- Min set cover of size  $k \Rightarrow$ T + t + k active
- Min set cover of size  $> k \Rightarrow$ less than t + k active





## SUBMODULARITY FOR APPROXIMATION

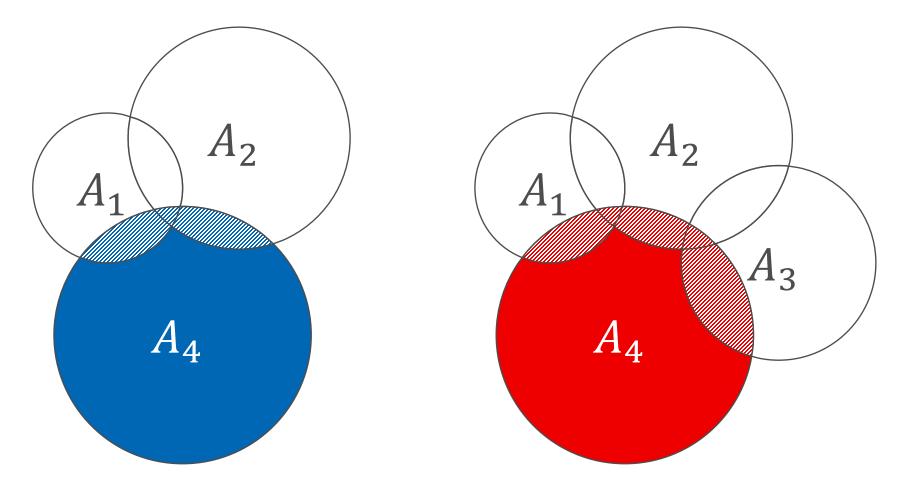
- Try to identify broad subclasses where good approximation is possible
- f is submodular if for  $X \subseteq Y, v \notin Y$ ,  $f(X \cup \{v\}) - f(X) \ge f(Y \cup \{v\}) - f(Y)$
- f is monotone if for  $X \subseteq Y, f(X) \leq f(Y)$
- Reduction gives *f* that is not submodular
- Theorem [Nemhauser et al. 1978]: f monotone and submodular, S\* optimal k-element subset, S obtained by greedily adding k elements that maximize marginal increase; then

$$f(S) \ge \left(1 - \frac{1}{e}\right) f(S^*)$$

## **EXAMPLE: COVERAGE FUNCTIONS**

- Let  $U, A_1, \dots, A_n \subset U$ , and  $f: 2^{[n]} \to \mathbb{R}^+$
- The coverage function is  $f(S) = |\bigcup_{i \in S} A_i|$
- This function is monotone submodular

#### **EXAMPLE: COVERAGE FUNCTIONS**



#### $f(\{1,2\} \cup \{4\}) - f(\{1,2\}) \qquad f(\{1,2,3\} \cup \{4\}) - f(\{1,2,3\})$

# **EXAMPLE: COVERAGE FUNCTIONS**

- Let  $U, A_1, \dots, A_n \subset U$ , and  $f: 2^{[n]} \to \mathbb{R}^+$
- The coverage function is  $f(S) = |\bigcup_{i \in S} A_i|$
- This function is monotone submodular
- Consider two more functions:
  - $f_1(S) = |\bigcup_{i \in S} A_i|$  if  $1 \in S$  and 0 otherwise
  - $f_2(S) = \mathbb{I}_{1 \in S} \cdot |A_1| + |\bigcup_{i \in S} A_i|$

#### Poll 1

Which function is submodular?

- 1. Only  $f_1$  3. Both
- 2. Only  $f_2$  4. Neither one

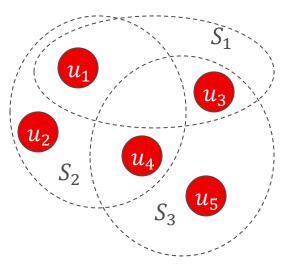


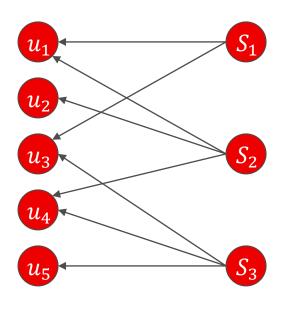
# INDEPENDENT CASCADE MODEL

- Reminder of model:
  - For each  $(u, v) \in E$  there is a weight  $p_{uv}$
  - $\circ\,$  When a node u becomes activated it has one chance to activate each neighbor v with probability  $p_{uv}$
- Theorem [Kempe et al. 2003]: Under the independent cascade model:
  - Influence maximization is NP-hard
  - The influence function *f* is submodular

# **PROOF OF NP-HARDNESS**

- Almost the same proof as before
- SET COVER: subsets  $S_1, ..., S_m$  of  $U = \{u_1, ..., u_t\}$ ; cover of size k?
- Bipartite graph:  $u_1, \ldots, u_t$  on one side,  $S_1, \ldots, S_m$  on the other
- If  $u_i \in S_j$  then there is an edge  $(S_j, u_i)$  with weight 1
- Min SC of size  $k \Rightarrow t + k$  active
- Min SC of size  $> k \Rightarrow$  less than t + k active  $\blacksquare$



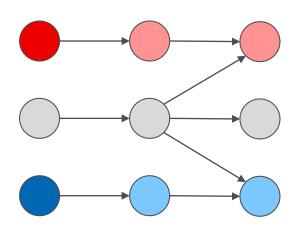


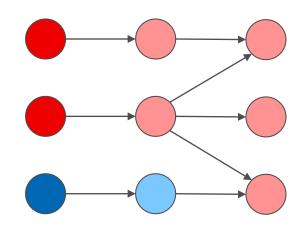
- Lemma: If  $f_1, ..., f_r$  are submodular functions,  $c_1, ..., c_r \ge 0$ , then  $f = \sum_{i=1}^r c_i f_i$  is a submodular function
- **Proof:** Let  $X \subseteq Y$  and  $v \notin Y$ , then

$$f(X \cup \{v\}) - f(X) - (f(Y \cup \{v\}) - f(Y))$$
  
=  $\sum_{i=1}^{r} c_i [f_i(X \cup \{v\}) - f_i(X) - (f_i(Y \cup \{v\}) - f_i(Y))] \ge 0$ 

- Key idea: for each (u, v) we flip a coin of bias p<sub>uv</sub> in advance
- Let  $\alpha$  denote a particular one of the  $2^{|E|}$  possible coin flip combinations
- $f_{\alpha}(S) =$  activated nodes with *S* as seed nodes and  $\alpha$  coin flips
- $v \in f_{\alpha}(S)$  iff v is reachable from S via live edges

- *f*<sub>α</sub> is submodular: it's like a coverage function where each seed node is associated with all reachable nodes
- $f(S) = \sum_{\alpha} \Pr[\alpha] \cdot f_{\alpha}(S)$ , that is, f is a nonnegative weighted sum of submodular functions
- By the lemma, *f* is submodular



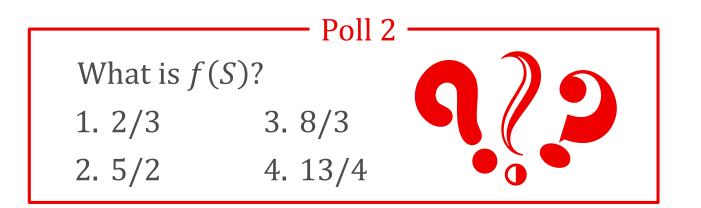


# LINEAR THRESHOLD MODEL

- Reminder of model:
  - Nonnegative weight  $w_{uv}$  for each edge  $(u, v) \in E$ ;  $w_{uv} = 0$  otherwise
  - Assume  $\forall v \in V, \sum_{u} w_{uv} \leq 1$
  - Each  $v \in V$  has threshold  $\theta_v$  chosen uniformly at random in [0,1]
  - $\circ v$  becomes active if

$$\sum_{\text{active } u} w_{uv} \ge \theta_v$$

## LINEAR THRESHOLD MODEL



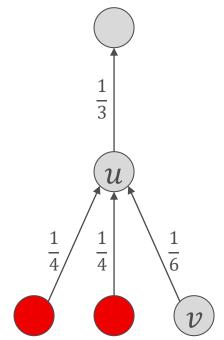
#### Poll 3

Given that *u* is inactive, probability it becomes active after *v* does?

1. 1/6 3. 1/2

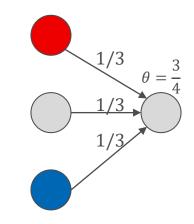
2. 1/3 4. 2/3

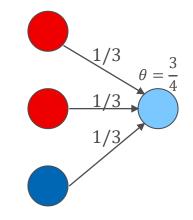




# LINEAR THRESHOLD MODEL

- Theorem [Kempe et al. 2003]: Under the linear threshold model:
  - Influence maximization is NPhard
  - The influence function *f* is submodular
- Difficulty: fixing the coin flips  $\alpha$ ,  $f_{\alpha}$  is not submodular





- Each *v* chooses at most one of its incoming edges at random; (u, v) selected with prob.  $w_{uv}$ , and none with prob.  $1 \sum_{u} w_{uv}$
- If we can show that these choices of live edges induce the same influence function as the linear threshold model, then the theorem follows from the same arguments as before

- We sketch the equivalence of the two models
- Linear threshold:
  - $A_t$  = active nodes at end of iteration t

• 
$$\Pr[v \in A_{t+1} \mid v \notin A_t] = \frac{\sum_{u \in A_t \setminus A_{t-1}} w_{uv}}{1 - \sum_{u \in A_{t-1}} w_{uv}}$$

- Live edges:
  - At every times step, determine whether v's live edge comes from current active set
  - If not, the source of the live edge remains unknown, subject to being outside the active set
  - Same probability as before

#### PROGRESSIVE VS. NONPROGRESSIVE

- Nonprogressive threshold model is identical except that at each round vchooses  $\theta_v^t$  u.a.r. in [0,1]
- Suppose process runs for *T* steps
- At each step  $t \le T$ , can target v for activation; k interventions overall
- Goal:  $\sum_{v}$ #rounds v was active
- Reduces to progressive case

