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MOTIVATION

• Firm is marketing a new product

• Collect data on the social network

• Choose set 𝑆 of early adopters and 
market to them directly

• Customers in 𝑆 generate a cascade of 
adoptions

• Question: How to choose 𝑆?



INFLUENCE FUNCTIONS

• Assume: finite graph, progressive process

• Fixing a cascade model, define influence 
function

• 𝑓 𝑆 = expected #active nodes at the end of 
the process starting with seed nodes 𝑆

• Maximize 𝑓(𝑆) over sets 𝑆 of size 𝑘

• Theorem [Kempe et al. 2003]: Under the 
general cascade model, influence 
maximization is NP-hard to approximate to 
a factor of 𝑛1−𝜖 for any 𝜖 > 0



𝑥𝑖

PROOF OF THEOREM
• SET COVER: subsets 𝑆1, … , 𝑆𝑚 of 

𝑈 = 𝑢1, … , 𝑢𝑡 ; cover of size 𝑘?

• Bipartite graph: 𝑢1, … , 𝑢𝑡 on one 
side, 𝑆1, … , 𝑆𝑚 and 𝑥1, … , 𝑥𝑇 for 
T = 𝑡𝑐 on the other

• 𝑢𝑖 becomes active if 𝑆𝑗 ∋ 𝑢𝑖 is 
active

• 𝑥𝑗 becomes active if 𝑢1, … , 𝑢𝑡 are 
active

• Min set cover of size 𝑘 ⇒
𝑇 + 𝑡 + 𝑘 active

• Min set cover of size > 𝑘 ⇒
less than 𝑡 + 𝑘 active ∎
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SUBMODULARITY FOR APPROXIMATION

• Try to identify broad subclasses where good 
approximation is possible

• 𝑓 is submodular if for 𝑋 ⊆ 𝑌, 𝑣 ∉ 𝑌,
𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌)

• 𝑓 is monotone if for 𝑋 ⊆ 𝑌, 𝑓 𝑋 ≤ 𝑓(𝑌)

• Reduction gives 𝑓 that is not submodular

• Theorem [Nemhauser et al. 1978]: 𝑓 monotone 
and submodular, 𝑆∗ optimal 𝑘-element subset, 𝑆
obtained by greedily adding 𝑘 elements that 
maximize marginal increase; then 

𝑓 𝑆 ≥ 1 −
1

𝑒
𝑓(𝑆∗)



EXAMPLE: COVERAGE FUNCTIONS

• Let 𝑈, 𝐴1, … , 𝐴𝑛 ⊂ 𝑈, and 𝑓: 2 𝑛 → ℝ+

• The coverage function is 𝑓 𝑆 = 𝑖∈𝑆ڂ 𝐴𝑖

• This function is monotone submodular 



EXAMPLE: COVERAGE FUNCTIONS
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EXAMPLE: COVERAGE FUNCTIONS

• Let 𝑈, 𝐴1, … , 𝐴𝑛 ⊂ 𝑈, and 𝑓: 2 𝑛 → ℝ+

• The coverage function is 𝑓 𝑆 = 𝑖∈𝑆ڂ 𝐴𝑖

• This function is monotone submodular 

• Consider two more functions:

◦ 𝑓1 𝑆 = 𝑖∈𝑆ڂ 𝐴𝑖 if 1 ∈ 𝑆 and 0 otherwise

◦ 𝑓2 𝑆 = 𝕀1∈𝑆 ⋅ 𝐴1 + | 𝑖∈𝑆ڂ 𝐴𝑖|

Which function is submodular?

1. Only 𝑓1 3. Both

2. Only 𝑓2 4. Neither one

Poll 1

?



INDEPENDENT CASCADE MODEL

• Reminder of model:

◦ For each 𝑢, 𝑣 ∈ 𝐸 there is a weight 𝑝𝑢𝑣

◦ When a node 𝑢 becomes activated it has 
one chance to activate each neighbor 𝑣
with probability 𝑝𝑢𝑣

• Theorem [Kempe et al. 2003]: Under 
the independent cascade model:

◦ Influence maximization is NP-hard

◦ The influence function 𝑓 is submodular



PROOF OF NP-HARDNESS

• Almost the same proof as before

• SET COVER: subsets 𝑆1, … , 𝑆𝑚 of   
𝑈 = 𝑢1, … , 𝑢𝑡 ; cover of size 𝑘?

• Bipartite graph: 𝑢1, … , 𝑢𝑡 on one 
side, 𝑆1, … , 𝑆𝑚 on the other

• If 𝑢𝑖 ∈ 𝑆𝑗 then there is an edge 

(𝑆𝑗 , 𝑢𝑖) with weight 1

• Min SC of size 𝑘 ⇒ 𝑡 + 𝑘 active

• Min SC of size > 𝑘 ⇒ less than 
𝑡 + 𝑘 active ∎

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑆1

𝑆2

𝑆3

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑆1

𝑆2

𝑆3



PROOF OF SUBMODULARITY

• Lemma: If 𝑓1, … , 𝑓𝑟 are submodular
functions, 𝑐1, … , 𝑐𝑟 ≥ 0, then 
𝑓 = σ𝑖=1

𝑟 𝑐𝑖𝑓𝑖 is a submodular function

• Proof: Let 𝑋 ⊆ 𝑌 and 𝑣 ∉ 𝑌, then

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 − (𝑓 𝑌 ∪ 𝑣 − 𝑓 𝑌 )

= 

𝑖=1

𝑟

𝑐𝑖 𝑓𝑖 𝑋 ∪ 𝑣 − 𝑓𝑖 𝑋 − (𝑓𝑖 𝑌 ∪ 𝑣 − 𝑓𝑖 𝑌 ) ≥ 0



PROOF OF SUBMODULARITY

• Key idea: for each (𝑢, 𝑣) we flip a coin of 
bias 𝑝𝑢𝑣 in advance 

• Let 𝛼 denote a particular one of the 2|𝐸|

possible coin flip combinations

• 𝑓𝛼 𝑆 = activated nodes with 𝑆 as seed 
nodes and 𝛼 coin flips

• 𝑣 ∈ 𝑓𝛼(𝑆) iff 𝑣 is reachable from 𝑆 via live
edges



PROOF OF SUBMODULARITY

• 𝑓𝛼 is submodular: it’s like a 
coverage function where each 
seed node is associated with 
all reachable nodes

• 𝑓(𝑆) = σ𝛼 Pr 𝛼 ⋅ 𝑓𝛼(𝑆), that 
is, 𝑓 is a nonnegative 
weighted sum of submodular
functions

• By the lemma, 𝑓 is 
submodular ∎



LINEAR THRESHOLD MODEL

• Reminder of model:

◦ Nonnegative weight 𝑤𝑢𝑣 for each edge 
𝑢, 𝑣 ∈ 𝐸; 𝑤𝑢𝑣 = 0 otherwise

◦ Assume ∀𝑣 ∈ 𝑉, σ𝑢 𝑤𝑢𝑣 ≤ 1

◦ Each 𝑣 ∈ 𝑉 has threshold 𝜃𝑣 chosen 
uniformly at random in [0,1]

◦ 𝑣 becomes active if 



active 𝑢

𝑤𝑢𝑣 ≥ 𝜃𝑣



LINEAR THRESHOLD MODEL
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?
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Given that 𝑢 is inactive,
probability it becomes 
active after 𝑣 does?



LINEAR THRESHOLD MODEL

• Theorem [Kempe et al. 2003]: 
Under the linear threshold 
model:

◦ Influence maximization is NP-
hard

◦ The influence function 𝑓 is 
submodular

• Difficulty: fixing the coin flips 
𝛼, 𝑓𝛼 is not submodular
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PROOF OF SUBMODULARITY

• Each 𝑣 chooses at most one of its 
incoming edges at random; (𝑢, 𝑣)
selected with prob. 𝑤𝑢𝑣 , and none with 
prob. 1 − σ𝑢 𝑤𝑢𝑣

• If we can show that these choices of 
live edges induce the same influence 
function as the linear threshold model, 
then the theorem follows from the 
same arguments as before



PROOF OF SUBMODULARITY

• We sketch the equivalence of the two models

• Linear threshold:

◦ 𝐴𝑡 = active nodes at end of iteration 𝑡

◦ Pr 𝑣 ∈ 𝐴𝑡+1 | 𝑣 ∉ 𝐴𝑡 =
σ𝑢∈𝐴𝑡∖𝐴𝑡−1

𝑤𝑢𝑣

1−σ𝑢∈𝐴𝑡−1
𝑤𝑢𝑣

• Live edges:

◦ At every times step, determine whether 𝑣’s live edge 
comes from current active set

◦ If not, the source of the live edge remains unknown, 
subject to being outside the active set

◦ Same probability as before  ∎



PROGRESSIVE VS. NONPROGRESSIVE

• Nonprogressive threshold 
model is identical except 
that at each round 𝑣
chooses 𝜃𝑣

𝑡 u.a.r. in [0,1]

• Suppose process runs for 𝑇
steps

• At each step 𝑡 ≤ 𝑇, can 
target 𝑣 for activation; 𝑘
interventions overall

• Goal: 
σ𝑣 #rounds 𝑣 was active

• Reduces to progressive 
case 
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