

Social Networks I: Coordination Games

Teachers: Ariel Procaccia (this time) and Alex Psomas

BACKGROUND

- Spread of ideas and new behaviors through a population
- Examples:
- Political movements
- Adoption of technological innovations
- Success of new product
- Process starts with early adopters and spreads through the social network

NETWORKED COORDINATION GAMES

- Simple model for the diffusion of ideas and innovations
- Social network is undirected graph $G=(V, E)$
- Choice between old behavior A and new behavior B
- Parametrized by $q \in(0,1)$

NETWORKED COORDINATION GAMES

- Rewards for u and v when $(u, v) \in E$:
- If both choose A, they receive q
- If both choose B, they receive $1-q$
- Otherwise both receive 0
- Overall payoff to $v=$ sum of payoffs
- Denote $d_{v}=$ degree of $v, d_{v}^{X}=$ \#neighbors playing X
- Payoff to v from choosing A is $q d_{v}^{A}$; reward from choosing B is $(1-q) d_{v}^{B}$
- v adopts B if $d_{v}^{B} \geq q d_{v} \Rightarrow q$ is a threshold

CASCADING BEHAVIOR

- Each node simultaneously updates its behavior in time steps $t=1,2, \ldots$
- Nodes in S initially adopt B
- $h_{q}(S)=$ set of nodes adopting B after one round
- $h_{q}^{k}(S)=$ after k rounds of updates
- Question: When does a small set of nodes convert the entire population?

CONTAGION THRESHOLD

- V is countably infinite and each d_{v} is finite
- v is converted by S if $\exists k$ s.t. $v \in h_{q}^{k}(S)$
- S is contagious if every node is converted
- Easier to be contagious when q is small
- Contagion threshold of $G=\max q$ s.t. \exists finite contagious set

EXAMPLE

Poll 1: What is the contagion threshold of G ?

EXAMPLE

Poll 2: What is the contagion threshold of G ?

PROGRESSIVE PROCESSES

- Nonprogressive process: Nodes can switch from A to B or B to A
- Progressive process: Nodes can only switch from A to B
- As before, a node v switches to B if a q fraction of its neighbors $N(v)$ follow B
- $\bar{h}_{q}(S)=$ set of nodes adopting B in progressive process; define $\bar{h}_{q}^{k}(S)$ as before

PROGRESSIVE PROCESSES

- With progressive processes intuitively the contagion threshold should be at least as high
- Theorem [Morris, 2000]: For any graph G, \exists finite contagious set wrt $h_{q} \Leftrightarrow$ \exists finite contagious set wrt \bar{h}_{q}
- I.e., the contagion threshold is identical under both models

PROOF OF THEOREM

- Lemma: $\bar{h}_{q}^{k}(X)=h_{q}\left(\bar{h}_{q}^{k-1}(X)\right) \cup X$
- Proof:
- $\bar{h}_{q}^{k}(X)=\left(\bar{h}_{q}^{k}(X) \backslash \bar{h}_{q}^{k-1}(X)\right) \cup\left(\bar{h}_{q}^{k-1}(X) \backslash X\right) \cup X$
- $\bar{h}_{q}^{k}(X) \backslash \bar{h}_{q}^{k-1}(X)=h_{q}\left(\bar{h}_{q}^{k-1}(X)\right) \backslash \bar{h}_{q}^{k-1}(X)$
- For every $v \in \bar{h}_{q}^{k-1} \backslash X, v \in h_{q}\left(\bar{h}_{q}^{k-1}(X)\right)$, because v has at least as many B neighbors as when it converted
- Clearly $X \subseteq h_{q}\left(\bar{h}_{q}^{k-1}(X)\right) \cup X$

PROOF OF THEOREM

- Enough to show: given a set S that is contagious wrt \bar{h}_{q}, there is a set T that is contagious wrt h_{q}
- Let ℓ s.t. $\mathrm{S} \cup N(S) \subseteq \bar{h}_{q}^{\ell}(S)$; this is our T
- For $k>\ell, \bar{h}_{q}^{k}(S)=h_{q}\left(\bar{h}_{q}^{k-1}(S)\right) \cup S$ by the lemma
- Since $N(S) \subseteq \bar{h}_{q}^{k-1}(S), S \subseteq h_{q}\left(\bar{h}_{q}^{k-1}(S)\right)$, and hence $\bar{h}_{q}^{k}(S)=h_{q}\left(\bar{h}_{q}^{k-1}(S)\right)$
- By induction, all $k>\ell$,

$$
\bar{h}_{q}^{k}(S)=h_{q}^{k-\ell}\left(\bar{h}_{q}^{\ell}\right)=h_{q}^{k-\ell}(T) \square
$$

CONTAGION THRESHOLD $\leq 1 / 2$

- Saw a graph with contagion threshold 1/2
- Does there exist a graph with contagion threshold $>1 / 2$?
- The previous theorem allows us to focus on the progressive case
- Theorem [Morris, 2000]: For any graph G, the contagion threshold $\leq 1 / 2$

PROOF OF THEOREM

- Let $q>1 / 2$, finite S
- Denote $S_{j}=\bar{h}_{q}^{j}(S)$
- $\delta(X)=$ set of edges with exactly one end in X
- If $S_{j-1} \neq S_{j}$ then $\left|\delta\left(S_{j}\right)\right|<\left|\delta\left(S_{j-1}\right)\right|$
- For each $v \in S_{j} \backslash S_{j-1}$, its edges into S_{j-1} are in $\delta\left(S_{j-1}\right) \backslash \delta\left(S_{j}\right)$, and its edges into $V \backslash S_{j}$ are in $\delta\left(S_{j}\right) \backslash \delta\left(S_{j-1}\right)$
- More of the former than the latter because v converted and $q>1 / 2$
- $\delta(S)$ is finite and $\delta\left(S_{j}\right) \geq 0$ for all j ■

MORE GENERAL MODELS

- Directed graphs to model asymmetric influence
- Redefine $N(v)=\{u \in V:(u, v) \in E\}$
- Assume progressive contagion
- Node is active if it adopts B; activated if switches from A to B

LINEAR THRESHOLD MODEL

- Nonnegative weight $w_{u v}$ for each edge $(u, v) \in E ; w_{u v}=0$ otherwise
- Assume $\forall v \in V, \sum_{u} w_{u v} \leq 1$
- Each $v \in V$ has threshold θ_{v}
- v becomes active if

GENERAL THRESHOLD MODEL

- Linear model assumes additive influences
- Switch if two co-workers and three family members switch?
- v has a monotonic function $g_{v}(\cdot)$ defined on subsets $X \subseteq N(v)$
- v becomes activated if the activated subset $X \subseteq N(v)$ satisfies $g_{v}(X) \geq \theta_{v}$

THE CASCADE MODEL

- When $\exists(u, v) \in E$ s.t. u is active and v is not, u has one chance to activate v
- v has an incremental function $p_{v}(u, X)$ $=$ probability that u activates v when X have tried and failed
- Special cases:
- Diminishing returns: $p_{v}(u, X) \geq p_{v}(u, Y)$ when $X \subseteq Y$
- Independent cascade: $p_{v}(u, X)=p_{u v}$

