

Matching II:
 Online Algorithms

Teachers: Ariel Procaccia (this time) and Alex Psomas

DISPLAY ADVERTISING

- Display advertising is the largest matching problem in the world
- Bipartite graph with advertisers and impressions
- Advertisers specify which impressions are acceptable this defines the edges
- Impressions arrive online

THE (SIMPLEST) MODEL

- Bipartite graph $G=(U, V, E)$ with $|U|=n$
- U is known "offline," the vertices of V arrive online (with their incident edges)
- Online vertices can only be matched when they arrive
- Objective: maximize size of matching
- ALG has competitive ratio $\alpha \leq 1$ if for every graph G and every input order π of V,

$$
\frac{A L G(G, \pi)}{O P T(G)} \geq \alpha
$$

ALGORITHM GREEDY

- Algorithm Greedy: match to an arbitrary unmatched neighbor (if one exists)

Poll 1
Competitive ratio of Greedr?

- $1 / n$
- $1 / \log n$
- $1 / \sqrt{n}$
- $1 / 2$

UPPER BOUND

- Observation: The competitive ratio of any deterministic algorithm is at most $1 / 2$

TAKE 2: ALGORITHM RANDOM

- Obvious idea: randomness
- Algorithm Random: Match to an unmatched neighbor uniformly at random
- Achieves $3 / 4$ on previous example

$$
\text { Poll } 2
$$

Competitive ratio of RaNDOM on current graph?

- ~7/8
- ~5/8
- $\sim 6 / 8$
- $\sim 4 / 8$

TAKE 3: ALGORITHM RANKING

- Algorithm Ranking:
- Choose a random permutation $\pi: U \rightarrow[n]$
- Match each vertex to its unmatched neighbor u with the lowest $\pi(u)$
- Looks like this is doing better than Random on previous example!
- Theorem [Karp et al. 1990]: The competitive ratio of RANKING is
 $1-1 / e \approx 0.63$

PROOF OF THEOREM

- Assume for ease of exposition that OPT $=n$
- Fix a perfect matching $M^{*}: U \cup V \rightarrow U \cup V$
- Fix π and $u \in U$
- If u is matched under $\pi,(\pi, u)$ is a match event at position $\pi(u)$, otherwise miss event
- ALG is the sum of probabilities of match events at all positions

PROOF OF THEOREM

- π induces a matching M^{π}
- Consider a miss event $\left(\pi, u^{*}\right)$ with $\pi\left(u^{*}\right)=t$
- $v^{*}=M^{*}\left(u^{*}\right), u^{\prime}=M^{\pi}\left(v^{*}\right)$
- Define π_{i} by moving u^{*} to position $i=1, \ldots, n$
- Claim: for each $i, M^{\pi_{i}}\left(v^{*}\right)=$
 u_{i} with $\pi_{i}\left(u_{i}\right) \leq t$

PROOF OF THEOREM

- Proof of claim: by illustration

π_{1}

π_{2}

π_{3}

π_{4}

PROOF OF THEOREM

- We have a 1- n mapping between miss events $\left(\pi, u^{*}\right)$ and match events $\left(\pi_{i}, u_{i}\right)$ where $M^{\pi_{i}}\left(u_{i}\right)=$ $M^{*}\left(u^{*}\right)$ and $\pi_{i}\left(u_{i}\right) \leq \pi\left(u^{*}\right)$
- Claim: Each miss event at position t is mapped to n unique match events
- Proof of claim:
- Fix miss events (π, u) and $\left(\pi^{\prime}, u^{\prime}\right)$ such that $\pi(u)=\pi^{\prime}\left(u^{\prime}\right)=t$, and both are mapped to $(\hat{\pi}, \hat{u})$
- $M^{\hat{u}}(\hat{u})=M^{*}(u)$ and $M^{\hat{u}}(\hat{u})=M^{*}\left(u^{\prime}\right) \Rightarrow u=u^{\prime}$
- The map only moves u from position t in π and π^{\prime}, giving $\hat{\pi}$ in both cases $\Rightarrow \pi=\pi^{\prime}$ ■

PROOF OF THEOREM

- We get the following set of equations for every $t=$ $1, \ldots, n$:

$$
n \cdot \operatorname{Pr}[\text { Miss at } t] \leq \sum_{s \leq t} \operatorname{Pr}[\text { Match at } s]
$$

- Setting $x_{t}=\operatorname{Pr}[$ Match at $t]$, this is

$$
1-x_{t} \leq \frac{1}{n} \sum_{s \leq t} x_{s}
$$

- By minimizing the objective function $\sum_{t} x_{t}$ over this polytope, we get $\sum_{t} x_{t} \geq\left(1-\frac{1}{e}\right) n$

UPPER BOUND

- Theorem [Karp et al. 1990]: No randomized alg has competitive ratio better than

$$
1-1 / e+o(1)
$$

- The proof below is due to Wajc [2015]
- Fractional algorithm: deterministically assign fractional weights to edges such that s.t. $\forall u \in U \cup V, f(u)=\sum_{(u, v) \in E} w_{u v} \leq 1$
- Lemma [Wajc 2015]: For any randomized alg there is a fractional alg with at least the same competitive ratio

PROOF OF THEOREM

- First online vertex v_{1} is connected to all U
- Let $u_{1} \in \operatorname{argmin}_{u \in U} f(u)$, in particular $f\left(u_{1}\right) \leq 1 / n$
- u_{1} will not be connected to any future online vertex

PROOF OF THEOREM

- t-th online vertex v_{t} is connected to all $U \backslash\left\{u_{1}, \ldots, u_{t-1}\right\}$
- $u_{t} \in \operatorname{argmin}_{u \in U \backslash\left\{u_{1}, \ldots, u_{t-1}\right\}} f(u)$
- u_{t} will not be connected to any future online vertex

Poll 3
What is OPT?

- $n / 2$
- $3 n / 4$
- $n\left(1-\frac{1}{e}\right)$
- n

PROOF OF THEOREM

- After step t, offline vertices that continue to be matched are matched to an average of at least $f(u)=\sum_{k=1}^{t} \frac{1}{n-k+1}$
- Following the arrival of the t-th online vertex with $t=n\left(1-\frac{1}{e}\right)+1$, it holds that offline vertices that will neighbor future online vertices are matched to an average of
$f(u)=\sum_{k=1}^{n\left(1-\frac{1}{e}\right)+1} \frac{1}{n-k+1}=\sum_{k=\frac{n}{e}}^{n} \frac{1}{k} \geq \ln (n)-\ln \frac{n}{e}=1$

PROOF OF THEOREM

- So at step $t, \frac{1}{n-t} \sum_{k=t+1}^{n} f\left(u_{k}\right) \geq 1$, but because $f(u) \leq 1$ for all $u \in U$, this means that $f\left(u_{k}\right)=1$ for all

$$
k=t+1, \ldots, n
$$

- That is, the algorithm cannot match the vertices v_{t+1}, \ldots, v_{n}
- $\mathrm{ALG} \leq n\left(1-\frac{1}{e}\right)+1$ ■

