

Matching I: Kidney Exchange

Teachers: Ariel Procaccia (this time) and Alex Psomas

KIDNEY EXCHANGE

EXAMPLE: KIDNEY EXCHANGE

- Cycle-Cover: Given a directed graph G and $L \in \mathbb{N}$, find a collection of disjoint cycles of length $\leq L$ in G that maximizes the number of covered vertices
- The problem is:
- Easy for $L=2$ (why?)
- Easy for unbounded L
- NP-hard for a constant $L \geq 3$

UNOS pool, Dec 2010
[Courtesy John Dickerson]

APPLICATION: UNOS

UOS

UNITED NETWORK FOR ORGAN SHARING

INCENTIVES

- In the past kidney exchanges were carried out by individual hospitals
- Today there are nationally organized exchanges; participating hospitals have little other interaction
- It was observed that hospitals match easy-to-match pairs internally, and enroll only hard-to-match pairs into larger exchanges
- Goal: incentivize hospitals to enroll all their pairs

THE STRATEGIC MODEL

- Undirected graph (only pairwise matches!)
- Vertices = donor-patient pairs
- Edges = compatibility
- Each player controls subset of vertices
- Mechanism receives a graph and returns a matching
- Utility of player = \# its matched vertices
- Target: \# matched vertices (util. social welfare)
- Strategy: subset of revealed vertices
- But edges are public knowledge
- Mechanism is strategyproof (SP) if it is a dominant strategy to reveal all vertices

OPT IS MANIPULABLE

OPT IS MANIPULABLE

APPROXIMATING SW

- Theorem [Ashlagi et al. 2010]: No deterministic SP mechanism can give a $2-\epsilon$ approximation
- Proof: We just proved it!
- Theorem [Kroer and Kurokawa 2013]: No randomized SP mechanism can give a $\frac{6}{5}-\epsilon$ approximation
- Proof: Homework 4

SP MECHANISM: TAKE 1

- Assume two players
- The Match $_{\{\{1\},\{2\}\}}$ mechanism:
- Consider matchings that maximize the number of "internal edges"
- Among these return a matching with max cardinality

ANOTHER EXAMPLE

GUARANTEES

- $\mathrm{MATCH}_{\{\{1\},\{2\}\}}$ gives a 2-approximation
- Cannot add more edges to matching
- For each edge in optimal matching, one of the two vertices is in mechanism's matching
- Theorem (special case): $\operatorname{MATCH}_{\{\{1\},\{2\}\}}$ is strategyproof for two players

PROOF OF THEOREM

- $M=$ matching when player 1 is honest, $M^{\prime}=$ matching when player 1 hides vertices
- $M \Delta M^{\prime}$ consists of paths and evenlength cycles, each consisting of alternating M, M^{\prime} edges

Question
What's wrong with the illustration on the right?

PROOF OF THEOREM

- Consider a path in $M \Delta M^{\prime}$, denote its edges in M by P and its edges in M^{\prime} by P^{\prime}
- For $i, j \in\{1,2\}$,

$$
\begin{aligned}
& P_{i j}=\left\{(u, v) \in P: u \in V_{i}, v \in V_{j}\right\} \\
& P_{i j}^{\prime}=\left\{(u, v) \in P^{\prime}: u \in V_{i}, v \in V_{j}\right\}
\end{aligned}
$$

- $\left|P_{11}\right| \geq\left|P_{11}^{\prime}\right|$, suppose $\left|P_{11}\right|=\left|P_{11}^{\prime}\right|$
- It holds that $\left|P_{22}\right|=\left|P_{22}^{\prime}\right|$
- M is max cardinality $\Rightarrow\left|P_{12}\right| \geq\left|P_{12}^{\prime}\right|$
- $U_{1}(P)=2\left|P_{11}\right|+\left|P_{12}\right| \geq 2\left|P_{11}^{\prime}\right|+\left|P_{12}^{\prime}\right|=$ $U_{1}\left(P^{\prime}\right)$

PROOF OF THEOREM

- Suppose $\left|P_{11}\right|>\left|P_{11}^{\prime}\right|$
- $\left|P_{12}\right| \geq\left|P_{12}^{\prime}\right|-2$
- Every subpath within V_{2} is of even length
- We can pair the edges of P_{12} and P_{12}^{\prime}, except maybe the first and the last
- $U_{1}(P)=2\left|P_{11}\right|+\left|P_{12}\right| \geq$
$2\left(\left|P_{11}^{\prime}\right|+1\right)+\left|P_{12}^{\prime}\right|-2=$
$U_{1}\left(P^{\prime}\right) ■$

THE CASE OF 3 PLAYERS

SP MECHANISM: TAKE 2

- Let $\Pi=\left(\Pi_{1}, \Pi_{2}\right)$ be a bipartition of the players
- The MaTCH_{Π} mechanism:
- Consider matchings that maximize the number of "internal edges" and do not have any edges between different players on the same side of the partition
- Among these return a matching with max cardinality (need tie breaking)

EUREKA?

- Theorem [Ashlagi et al. 2010]: MATCH_{Π} is strategyproof for any number of players and any partition Π
- Recall: for $n=2, \operatorname{MATCH}_{\{\{1\},\{2\}\}}$ guarantees a 2-approximation

Poll 1

Approximation guarantees given by
МАТСН $_{\Pi}$ for $n=3$ and $\Pi=\{\{1\},\{2,3\}\}$?

- 2-approx
- 4-approx
- 3-approx
- More than 4

THE MECHANISM

- The MiX-AND-MATCH mechanism:
- Mix: choose a random partition Π - Match: Execute MATCH $_{\Pi}$
- Theorem [Ashlagi et al. 2010]: Mix-ANDMATCH is strategyproof and guarantees a 2-approximation
- We only prove the approximation ratio

PROOF OF THEOREM

- $M^{*}=$ optimal matching
- Create a matching M^{\prime} such that M^{\prime} is max cardinality on each V_{i}, and
$\sum_{i}\left|M_{i i}^{\prime}\right|+\frac{1}{2} \sum_{i \neq j}\left|M_{i j}^{\prime}\right| \geq \sum_{i}\left|M_{i i}^{*}\right|+\frac{1}{2} \sum_{i \neq j}\left|M_{i j}^{*}\right|$
- $M^{* *}=$ max cardinality on each V_{i}
- For each path P in $M^{*} \Delta M^{* *}$, add $P \cap M^{* *}$ to M^{\prime} if $M^{* *}$ has more internal edges than M^{*}, otherwise add $P \cap M^{*}$ to M^{\prime}
- For every internal edge M^{\prime} gains relative to M^{*}, it loses at most one edge overall ■

PROOF OF THEOREM

- Fix Π and let M^{Π} be the output of MATCH_{Π}
- The mechanism returns max cardinality across Π subject to being max cardinality internally, therefore
$\sum_{i}\left|M_{i i}^{\Pi}\right|+\sum_{i \in \Pi_{1}, j \in \Pi_{2}}\left|M_{i j}^{\Pi}\right| \geq \sum_{i}\left|M_{i i}^{\prime}\right|+\sum_{i \in \Pi_{1}, j \in \Pi_{2}}\left|M_{i j}^{\prime}\right|$

PROOF OF THEOREM

$$
\begin{aligned}
\mathbb{E}\left[\left|M^{\Pi}\right|\right] & =\frac{1}{2^{n}} \sum_{\Pi}\left(\sum_{i}\left|M_{i i}^{\Pi}\right|+\sum_{i \in \Pi_{1}, j \in \Pi_{2}}\left|M_{i j}^{\Pi}\right|\right) \\
& \geq \frac{1}{2^{n}} \sum_{\Pi}\left(\sum_{i}\left|M_{i i}^{\prime}\right|+\sum_{i \in \Pi_{1}, j \in \Pi_{2}}\left|M_{i j}^{\prime}\right|\right) \\
& =\sum_{i}\left|M_{i i}^{\prime}\right|+\frac{1}{2^{n}} \sum_{\Pi} \sum_{i \in \Pi_{1}, j \in \Pi_{2}}\left|M_{i j}^{\prime}\right| \\
& =\sum_{i}\left|M_{i i}^{\prime}\right|+\frac{1}{2} \sum_{i \neq j}\left|M_{i j}^{\prime}\right| \geq \sum_{i}\left|M_{i i}^{*}\right|+\frac{1}{2} \sum_{i \neq j}\left|M_{i j}^{*}\right| \\
& \geq \frac{1}{2} \sum_{i}\left|M_{i i}^{*}\right|+\frac{1}{2} \sum_{i \neq j}\left|M_{i j}^{*}\right|=\frac{1}{2}\left|M^{*}\right|
\end{aligned}
$$

