

Matching I: Kidney Exchange

Teachers: Ariel Procaccia (this time) and Alex Psomas

KIDNEY EXCHANGE

EXAMPLE: KIDNEY EXCHANGE

- CYCLE-COVER: Given a directed graph *G* and $L \in \mathbb{N}$, find a collection of disjoint cycles of length $\leq L$ in *G* that maximizes the number of covered vertices
- The problem is:
 - Easy for L = 2 (why?)
 - Easy for unbounded *L*
 - NP-hard for a constant $L \ge 3$

UNOS pool, Dec 2010 [Courtesy John Dickerson]

APPLICATION: UNOS

UNITED NETWORK FOR ORGAN SHARING

INCENTIVES

- In the past kidney exchanges were carried out by individual hospitals
- Today there are nationally organized exchanges; participating hospitals have little other interaction
- It was observed that hospitals match easyto-match pairs internally, and enroll only hard-to-match pairs into larger exchanges
- Goal: incentivize hospitals to enroll all their pairs

THE STRATEGIC MODEL

- Undirected graph (only pairwise matches!)
 - Vertices = donor-patient pairs
 - Edges = compatibility
 - Each player controls subset of vertices
- Mechanism receives a graph and returns a matching
- Utility of player = # its matched vertices
- Target: # matched vertices (util. social welfare)
- Strategy: subset of revealed vertices
 - But edges are public knowledge
- Mechanism is strategyproof (SP) if it is a dominant strategy to reveal all vertices

OPT IS MANIPULABLE

OPT IS MANIPULABLE

APPROXIMATING SW

- Theorem [Ashlagi et al. 2010]: No deterministic SP mechanism can give a 2 – ε approximation
- **Proof:** We just proved it!
- Theorem [Kroer and Kurokawa 2013]: No randomized SP mechanism can give a $\frac{6}{5} \epsilon$ approximation
- **Proof:** Homework 4

SP MECHANISM: TAKE 1

- Assume two players
- The MATCH $_{\{\{1\},\{2\}\}}$ mechanism:
 - Consider matchings that maximize the number of "internal edges"
 - Among these return a matching with max cardinality

ANOTHER EXAMPLE

GUARANTEES

- $MATCH_{\{\{1\},\{2\}\}}$ gives a 2-approximation
 - Cannot add more edges to matching
 - For each edge in optimal matching, one of the two vertices is in mechanism's matching
- Theorem (special case): MATCH_{{{1},{2}}} is strategyproof for two players

- *M* = matching when player 1 is honest, *M*' = matching when player 1 hides vertices
- $M\Delta M'$ consists of paths and evenlength cycles, each consisting of alternating M, M' edges

Question

What's wrong with the illustration on the right?

- Consider a path in $M\Delta M'$, denote its edges in *M* by *P* and its edges in *M'* by *P'*
- For $i, j \in \{1, 2\}$, $P_{ij} = \{(u, v) \in P : u \in V_i, v \in V_j\}$ $P'_{ij} = \{(u, v) \in P' : u \in V_i, v \in V_j\}$
- $|P_{11}| \ge |P'_{11}|$, suppose $|P_{11}| = |P'_{11}|$
- It holds that $|P_{22}| = |P'_{22}|$
- *M* is max cardinality $\Rightarrow |P_{12}| \ge |P'_{12}|$
- $U_1(P) = 2|P_{11}| + |P_{12}| \ge 2|P'_{11}| + |P'_{12}| = U_1(P')$

- Suppose $|P_{11}| > |P'_{11}|$
- $|P_{12}| \ge |P'_{12}| 2$
 - $\circ~$ Every subpath within V_2 is of even length
 - We can pair the edges of P₁₂ and P'₁₂, except maybe the first and the last
- $U_1(P) = 2|P_{11}| + |P_{12}| \ge$ $2(|P'_{11}| + 1) + |P'_{12}| - 2 =$ $U_1(P') \blacksquare$

THE CASE OF 3 PLAYERS

SP MECHANISM: TAKE 2

- Let $\Pi = (\Pi_1, \Pi_2)$ be a bipartition of the players
- The Match_{Π} mechanism:
 - Consider matchings that maximize the number of "internal edges" and do not have any edges between different players on the same side of the partition
 - Among these return a matching with max cardinality (need tie breaking)

EUREKA?

- Theorem [Ashlagi et al. 2010]: MATCH $_{\Pi}$ is strategyproof for any number of players and any partition Π
- Recall: for n = 2, MATCH_{{{1},{2}}} guarantees a 2-approximation

Poll 1

Approximation guarantees given by $MATCH_{\Pi}$ for n = 3 and $\Pi = \{\{1\}, \{2,3\}\}$?

2-approx

• 4-approx

• 3-approx

• More than 4

THE MECHANISM

- The MIX-AND-MATCH mechanism:
 - $\circ\,$ Mix: choose a random partition Π
 - Match: Execute $MATCH_{\Pi}$
- Theorem [Ashlagi et al. 2010]: MIX-AND-MATCH is strategyproof and guarantees a 2-approximation
- We only prove the approximation ratio

- $M^* = optimal matching$
- Create a matching *M*′ such that *M*′ is max cardinality on each *V*_{*i*}, and

$$\sum_{i} |M'_{ii}| + \frac{1}{2} \sum_{i \neq j} |M'_{ij}| \ge \sum_{i} |M^*_{ii}| + \frac{1}{2} \sum_{i \neq j} |M^*_{ij}|$$

- $M^{**} = \max$ cardinality on each V_i
- ∘ For each path *P* in $M^*\Delta M^{**}$, add *P* ∩ M^{**} to *M'* if M^{**} has more internal edges than M^* , otherwise add *P* ∩ M^* to M'
- For every internal edge M' gains relative to M*, it loses at most one edge overall ■

- Fix Π and let M^{Π} be the output of MATCH_{Π}
- The mechanism returns max cardinality across Π subject to being max cardinality internally, therefore

$$\sum_{i} |M_{ii}^{\Pi}| + \sum_{i \in \Pi_{1}, j \in \Pi_{2}} |M_{ij}^{\Pi}| \ge \sum_{i} |M_{ii}'| + \sum_{i \in \Pi_{1}, j \in \Pi_{2}} |M_{ij}'|$$

