

Social Choice III: Strategic Manipulation

Teachers: Ariel Procaccia (this time) and Alex Psomas

REMINDER: THE VOTING MODEL

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives *A*; denote |A| = m
- Each voter has a ranking $\sigma_i \in \mathcal{L}$ over the alternatives; $x \succ_i y$ means that voter *i* prefers *x* to *y*
- A preference profile $\sigma \in \mathcal{L}^n$ is a collection of all voters' rankings
- A voting rule is a function $f: \mathcal{L}^n \to A$

MANIPULATION

So far the voters were honest!

MANIPULATION

- Using Borda count
- Top profile: *b* wins
- Bottom profile: *a* wins
- By changing his vote, voter 3 achieves a better outcome!

1	2	3
b	b	а
а	а	b
С	С	С
d	d	d

1	2	3
b	b	а
а	а	С
С	С	d
d	d	b

STRATEGYPROOFNESS

- Denote $\boldsymbol{\sigma}_{-i} = (\sigma_1, \dots, \sigma_{i-1}, \sigma_{i+1}, \dots, \sigma_n)$
- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences: $\forall \sigma \in \mathcal{L}^n, \forall i \in N, \forall \sigma'_i \in \mathcal{L}, f(\sigma) \ge_i f(\sigma'_i, \sigma_{-i})$

STRATEGYPROOFNESS

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is constant if the same alternative is always chosen
- Constant functions and dictatorships are SP

Dictatorship

Constant function

GIBBARD-SATTERTHWAITE

- A voting rule is **onto** if any alternative can win
- Theorem (Gibbard-Satterthwaite): If m ≥ 3 then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

Gibbard

Satterthwaite

- Lemmas (prove in HW1):
 - Strong monotonicity: f is SP rule, σ profile, $f(\sigma) = a$. Then $f(\sigma') = a$ for all profiles σ' s.t. $\forall x \in A, i \in N$: $[a \succ_i x \Rightarrow a \succ'_i x]$
 - **Pareto optimality:** f is SP+onto rule, σ profile. If $a \succ_i b$ for all $i \in N$ then $f(\sigma) \neq b$
- Let us assume that $m \ge n$, and neutrality: $f(\pi(\sigma)) = \pi(f(\sigma))$ for all $\pi: A \to A$

- Say n = 4 and $A = \{a, b, c, d, e\}$
- Consider the following profile

- Pareto optimality $\Rightarrow e$ is not the winner
- Suppose $f(\boldsymbol{\sigma}) = a$

1	2	3	4
а	b	С	d
b	С	d	а
С	d	а	b
d	а	b	С
е	е	е	е

1	2	3	4
а	d	d	d
d	а	а	а
b	b	b	b
С	С	С	С
е	е	е	е

σ

 σ^1

• Strong monotonicity $\Rightarrow f(\sigma^1) = a$

1	2	3	4		
а	d	d	d		
d	b	а	а		
b	С	b	b		
С	е	С	С		
е	а	е	е		
σ^2					

Poll 1

How many options are there for $f(\sigma^2)$?

• 1 option

3 options 4 options

• 2 options

- Pareto optimality $\Rightarrow f(\sigma^j) \notin \{b, c, e\}$
- $[SP \Rightarrow f(\sigma^j) \neq d] \Rightarrow f(\sigma^j) = a$
- Strong monotonicity $\Rightarrow f(\sigma) = a$ for every σ where 1 ranks *a* first
- Neutrality \Rightarrow 1 is a dictator

CIRCUMVENTING G-S

- Restricted preferences (next lecture)
- Money \Rightarrow mechanism design (done)
- Computational complexity (this lecture)

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al. 1989]

THE COMPUTATIONAL PROBLEM

- *f*-MANIPULATION problem:
 - Given votes of nonmanipulators and a preferred alternative p
 - Can manipulator cast
 vote that makes p
 uniquely win under f?
- Example: Borda, p = a

1	2	3
b	b	
а	а	
С	С	
d	d	

1	2	3
b	b	а
а	а	С
С	С	d
d	d	b

A GREEDY ALGORITHM

- Rank *p* in first place
- While there are unranked alternatives:
 - If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
 - Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а		а	а	b	а	а	С
С	С		С	С		С	С	
d	d		d	d		d	d	

1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а	С	а	а	С	а	а	С
С	С	b	С	С	d	С	С	d
d	d		d	d		d	d	b

1	2	3	4	5
а	b	е	е	а
b	а	С	С	
С	d	b	b	
d	е	а	а	
е	С	d	d	

	а	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	2	-	3	1
d	0	0	1	-	2
е	2	2	3	2	-

Preference profile

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	
d	е	а	а	
е	С	d	d	

	а	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	0	1	-	2
е	2	2	3	2	-

Preference profile

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	
е	С	d	d	

	а	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	2	3	2	-

Preference profile

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	е
е	С	d	d	

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

Preference profile

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	е
е	С	d	d	b

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

Preference profile

WHEN DOES THE ALG WORK?

- Theorem [Bartholdi et al., SCW 89]: Fix $i \in N$ and the votes of other voters. Let f be a rule s.t. \exists function $s(\sigma_i, x)$ such that:
 - 1. For every σ_i , f chooses a alternative that uniquely maximizes $s(\sigma_i, x)$
 - 2. $\{y: y \prec_i x\} \subseteq \{y: y \prec'_i x\} \Rightarrow s(\sigma_i, x) \le s(\sigma'_i, x)$

Then the algorithm always decides *f* - MANIPULATION correctly

PROOF OF THEOREM

- Suppose the algorithm failed, producing a partial ranking σ_i
- Assume for contradiction σ'_i makes p win
- $U \leftarrow$ alternatives not ranked in σ_i
- $u \leftarrow$ highest ranked alternative in U according to σ'_i
- Complete σ_i by adding u first, then others arbitrarily

PROOF OF THEOREM

- Property $2 \Rightarrow s(\sigma_i, p) \ge s(\sigma'_i, p)$
- Property 1 and σ' makes p the winner $\Rightarrow s(\sigma'_i, p) > s(\sigma'_i, u)$
- Property $2 \Rightarrow s(\sigma'_i, u) \ge s(\sigma_i, u)$
- Conclusion: s(σ_i, p) > s(σ_i, u), so the alg could have inserted
 u next

HARD-TO-MANIPULATE RULES

- Copeland with second order tie breaking [Bartholdi et al. 1989]
- STV [Bartholdi and Orlin 1991]
- Ranked Pairs [Xia et al. 2009]
 - Sort pairwise comparisons by strength
 - Lock in pairwise comparisons in that order, unless a cycle is created, in which case the opposite edge is locked in
 - Return the alternative at the top of the induced order

