

Social Choice III:
 Strategic Manipulation

Teachers: Ariel Procaccia (this time) and Alex Psomas

REMINDER: THE VOTING MODEL

- Set of voters $N=\{1, \ldots, n\}$
- Set of alternatives A; denote $|A|=m$
- Each voter has a ranking $\sigma_{i} \in \mathcal{L}$ over the alternatives; $x \succ_{i} y$ means that voter i prefers x to y
- A preference profile $\sigma \in \mathcal{L}^{n}$ is a collection of all voters' rankings
- A voting rule is a function $f: \mathcal{L}^{n} \rightarrow A$

MANIPULATION

So far the voters were honest!

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!

1	2	3
b	b	a
a	a	b
c	c	c
d	d	d

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

STRATEGYPROOFNESS

- Denote $\boldsymbol{\sigma}_{-i}=\left(\sigma_{1}, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{n}\right)$
- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences: $\forall \boldsymbol{\sigma} \in \mathcal{L}^{n}, \forall i \in N, \forall \sigma_{i}^{\prime} \in \mathcal{L}, f(\boldsymbol{\sigma}) \succcurlyeq_{i} f\left(\sigma_{i}^{\prime}, \boldsymbol{\sigma}_{-i}\right)$

Question
Max m for which plurality is SP?

- $m=2$
- $m=4$
- $m=3$
- $m=\infty$

STRATEGYPROOFNESS

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is constant if the same alternative is always chosen
- Constant functions and dictatorships are SP

Constant function

GIBBARD-SATTERTHWAITE

- A voting rule is onto if any alternative can win
- Theorem (GibbardSatterthwaite): If $m \geq 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

Satterthwaite

PROOF SKETCH OF G-S

- Lemmas (prove in HW1):
- Strong monotonicity: f is SP rule, σ profile, $f(\boldsymbol{\sigma})=a$. Then $f\left(\boldsymbol{\sigma}^{\prime}\right)=a$ for all profiles $\boldsymbol{\sigma}^{\prime}$ s.t. $\forall x \in A, i \in N:\left[a>_{i} x \Rightarrow a>_{i}^{\prime} x\right]$
- Pareto optimality: f is SP+onto rule, $\boldsymbol{\sigma}$ profile. If $a \succ_{i} b$ for all $i \in N$ then $f(\boldsymbol{\sigma}) \neq b$
- Let us assume that $m \geq n$, and neutrality:

$$
f(\pi(\boldsymbol{\sigma}))=\pi(f(\boldsymbol{\sigma})) \text { for all } \pi: A \rightarrow A
$$

PROOF SKETCH OF G-S

- Say $n=4$ and $A=\{a, b, c, d, e\}$
- Consider the following profile

- Pareto optimality $\Rightarrow e$ is not the winner
- Suppose $f(\boldsymbol{\sigma})=a$

PROOF SKETCH OF G-S

1	2	3	4
a	b	c	d
b	c	d	a
c	d	a	b
d	a	b	c
e	e	e	e
		$\boldsymbol{\sigma}$	

1	2	3	4
a	d	d	d
d	a	a	a
b	b	b	b
c	c	c	c
e	e	e	e
	$\boldsymbol{\sigma}^{1}$		

- Strong monotonicity $\Rightarrow f\left(\boldsymbol{\sigma}^{1}\right)=a$

PROOF SKETCH OF G-S

1	2	3	4
a	d	d	d
d	a	a	a
b	b	b	b
c	c	c	c
e	e	e	e
	$\boldsymbol{\sigma}^{1}$		

1	2	3	4	
a	d	d	d	
d	b	a	a	
b	c	b	b	
c	e	c	c	
e	a	e	e	
	$\boldsymbol{\sigma}^{2}$			

Poll 1
How many options are there for $f\left(\sigma^{2}\right)$?

- 1 option
- 3 options
- 2 options
- 4 options

PROOF SKETCH OF G-S

1	2	3	4	1	2	3	4	1	2	3	4
a	d	d	d	a	d	d	d	a	d	d	d
d	b	a	a	d	b	b	a	d	b	b	b
b	c	b	b	b	c	c	b	b	c	c	c
c	e	c	c	c	e	e	c	c	e	e	e
e	a	e	e	e	a	a	e	e	a	a	a
	$\boldsymbol{\sigma}^{2}$		$\boldsymbol{\sigma}^{3}$								
				$\boldsymbol{\sigma}^{4}$							

- Pareto optimality $\Rightarrow f\left(\boldsymbol{\sigma}^{j}\right) \notin\{b, c, e\}$
- $\left[\mathrm{SP} \Rightarrow f\left(\boldsymbol{\sigma}^{j}\right) \neq d\right] \Rightarrow f\left(\boldsymbol{\sigma}^{j}\right)=a$
- Strong monotonicity $\Rightarrow f(\boldsymbol{\sigma})=a$ for every $\boldsymbol{\sigma}$ where 1 ranks a first
- Neutrality $\Rightarrow 1$ is a dictator $■$

CIRCUMVENTING G-S

- Restricted preferences (next lecture)
- Money \Rightarrow mechanism design (done)
- Computational complexity (this lecture)

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al. 1989]

THE COMPUTATIONAL PROBLEM

- f-MANIPULATION problem:
- Given votes of nonmanipulators and a preferred alternative p
- Can manipulator cast vote that makes p uniquely win under f ?
- Example: Borda, $p=a$

1	2	3
b	b	
a	a	
c	c	
d	d	

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

A GREEDY ALGORITHM

- Rank p in first place
- While there are unranked alternatives:
- If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
- Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	c
c	c		c	c		c	c	
d	d		d	d		d	d	

1	2	3
b	b	a
a	a	c
c	c	b
d	d	

1	2	3
b	b	a
a	a	c
c	c	d
d	d	

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

EXAMPLE: COPELAND

1	2	3	4	5
a	b	e	e	a
b	a	c	c	
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	2	-	3	1
d	0	0	1	-	2
e	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

1	2	3	4	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	0	1	-	2
e	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

1	2	3	4	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	
e	c	d	d	

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

1	2	3	4	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	3	3	2	-

Pairwise elections

EXAMPLE: COPELAND

1	2	3	4	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	b

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	3	3	2	-

Pairwise elections

WHEN DOES THE ALG WORK?

- Theorem [Bartholdi et al., SCW 89]: Fix $i \in N$ and the votes of other voters. Let f be a rule s.t. \exists function $s\left(\sigma_{i}, x\right)$ such that:

1. For every σ_{i}, f chooses a alternative that uniquely maximizes $s\left(\sigma_{i}, x\right)$
2. $\left\{y: y \prec_{i} x\right\} \subseteq\left\{y: y \prec_{i}^{\prime} x\right\} \Rightarrow s\left(\sigma_{i}, x\right) \leq$ $s\left(\sigma_{i}^{\prime}, x\right)$
Then the algorithm always decides f MANIPULATION correctly

PROOF OF THEOREM

- Suppose the algorithm failed, producing a partial ranking σ_{i}
- Assume for contradiction σ_{i}^{\prime} makes p win
- $U \leftarrow$ alternatives not ranked in σ_{i}
- $u \leftarrow$ highest ranked alternative in U according to σ_{i}^{\prime}
- Complete σ_{i} by adding u first, then others arbitrarily

PROOF OF THEOREM

- Property $2 \Rightarrow s\left(\sigma_{i}, p\right) \geq s\left(\sigma_{i}^{\prime}, p\right)$
- Property 1 and σ^{\prime} makes p the winner $\Rightarrow s\left(\sigma_{i}^{\prime}, p\right)>s\left(\sigma_{i}^{\prime}, u\right)$
- Property $2 \Rightarrow s\left(\sigma_{i}^{\prime}, u\right) \geq s\left(\sigma_{i}, u\right)$

HARD-TO-MANIPULATE RULES

- Copeland with second order tie breaking [Bartholdi et al. 1989]
- STV [Bartholdi and Orlin 1991]
- Ranked Pairs [Xia et al. 2009]
- Sort pairwise comparisons by strength
- Lock in pairwise comparisons in that order, unless a cycle is created, in which case the opposite edge is locked in
- Return the alternative at the top of the induced order

EXAMPLE: RANKED PAIRS

