

Social Choice II: Implicit Utilitarian Voting

Teachers: Ariel Procaccia (this time) and Alex Psomas

REMINDER: THE VOTING MODEL

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives *A*; denote |A| = m
- Each voter has a ranking $\sigma_i \in \mathcal{L}$ over the alternatives; $x \succ_i y$ means that voter *i* prefers *x* to *y*
- A preference profile $\sigma \in \mathcal{L}^n$ is a collection of all voters' rankings
- A voting rule is a function $f: \mathcal{L}^n \to A$

UTILITIES AND WELFARE

- The voting model assumes ordinal preferences, but it is plausible that they are derived from underlying cardinal preferences
- Assume that each voter *i* has a utility function $u_i: A \rightarrow [0,1]$, such that $\sum_{x \in A} u_i(x) = 1$
- Voter *i* reports a ranking σ_i that is **consistent** with his utility function, denoted $u_i \triangleright \sigma_i$:

 $x \succ_i y \Rightarrow u_i(x) \ge u_i(y)$

- As usual, the (utilitarian) social welfare of $x \in A$ is $sw(x, \mathbf{u}) = \sum_{i \in N} u_i(x)$
- Our goal is choose an alternative that maximizes social welfare, even though we cannot observe the utilities directly

DISTORTION

- We want to quantify how much social welfare a voting rule loses due to lack of information
- The distortion of voting rule *f* on *σ* is

dist(*f*,
$$\boldsymbol{\sigma}$$
) = $\max_{\boldsymbol{u} \triangleright \boldsymbol{\sigma}} \frac{\max_{x \in A} SW(x, \boldsymbol{u})}{SW(f(\boldsymbol{\sigma}), \boldsymbol{u})}$

• The distortion of voting rule f is $dist(f) = \max_{\sigma} dist(f, \sigma)$

DISTORTION

• Consider the preference profile

1	2	3
а	а	b
С	С	а
b	b	С

Poll 1 Distortion of Borda count on this profile? • 3/2 • 2 • 5/3 • 5/2

DISTORTION

• Consider the preference profile

1	2	 m-1
<i>a</i> ₁	a ₂	 a_{m-1}
x	X	 X
•	:	 :

Poll 2

Distortion of plurality on this profile?

- $\Theta(1)$ $\Theta(m)$
- $\Theta(\sqrt{m})$ $\Theta(m^2)$

DETERMINISTIC LOWER BOUND

- Theorem: Any deterministic voting rule *f* has distortion at least *m*
- Proof:
 - Partition *N* into two subsets with $|N_k| = n/2$, and let the profile σ be such that voters in N_1 rank a_1 first, and voter in N_2 rank a_2 first

• W.l.o.g.
$$f(\boldsymbol{\sigma}) = a_1$$

- Let $u_i(a_2) = 1$, $u_i(a_j) = 0$ for $i \in N_2$, $u_i(a_j) = 1/m$ for all $i \in N_1$
- It holds that

dist
$$(f, \sigma) \ge \frac{\frac{n}{2}}{\frac{n}{2m}} = m$$

RANDOMIZED UPPER BOUND

- Under the harmonic scoring rule, each voter gives 1/k points to alternative ranked k-th
- Denote the score of x under $\boldsymbol{\sigma}$ as sc(x, $\boldsymbol{\sigma}$)
- Why is this useful? Because $sw(x, u) \le sc(x, \sigma)$
 - for any $\mathbf{u} \triangleright \boldsymbol{\sigma}$
- Theorem [Caragiannis et al. 2015]: The randomized voting rule that, with prob. $\frac{1}{2}$, selects $x \in A$ with prob. proportional to $sc(x, \sigma)$, and selects a uniformly random alternative with prob. $\frac{1}{2}$, has distortion $O(\sqrt{m \log m})$
- **Discussion:** In what sense is this result practical?

PROOF OF THEOREM

- Case 1: The welfare-maximizing x^* satisfies $sw(x^*, \mathbf{u}) \ge n\sqrt{(\ln m + 1)/m}$
- Then $\operatorname{sc}(x^*, \sigma) \ge n\sqrt{(\ln m + 1)/m}$
- $\sum_{x \in A} \operatorname{sc}(x, \sigma) = n \sum_{k=1}^{m} 1/k \le n(\ln m + 1)$
- *x*^{*} is selected with prob. at least

$$\frac{1}{2} \cdot \frac{n\sqrt{\frac{\ln m + 1}{m}}}{n(\ln m + 1)} = \frac{1}{2\sqrt{m}(\ln m + 1)}$$

• Now,

$$\mathbb{E}[\mathrm{sw}(f(\boldsymbol{\sigma}),\boldsymbol{u}] \ge \Pr[f(\boldsymbol{\sigma}) = x^*]\mathrm{sw}(x^*,\boldsymbol{u})$$

$$\geq \frac{1}{2\sqrt{m(\ln m + 1)}} \operatorname{sw}(x^*, \boldsymbol{u})$$

PROOF OF THEOREM

- Case 2: For every $x \in A$ it holds that $sw(x, u) < n\sqrt{(\ln m + 1)/m}$
- Uniformly random selection gives expected social welfare

$$\frac{1}{2}\frac{1}{m}\sum_{x\in A}\sum_{i\in N}u_i(x) = \frac{1}{2}\frac{1}{m}\sum_{i\in N}\left(\sum_{x\in A}u_i(x)\right) = \frac{n}{2m}$$

• Distortion is at most

$$\frac{\mathrm{sw}(x^*, \boldsymbol{u})}{\mathbb{E}[\mathrm{sw}(f(\boldsymbol{\sigma}), \boldsymbol{u})]} \leq \frac{n\sqrt{\frac{\ln m + 1}{m}}}{\frac{n}{2m}} = 2\sqrt{m(\ln m + 1)}$$

RANDOMIZED LOWER BOUND

- Theorem [Caragiannis et al. 2012]: Any randomized voting rule f has distortion $\Omega(\sqrt{m})$
- Proof:
 - Partition *N* into subsets with $|N_k| = n/\sqrt{m}$, and let the profile be

N ₁	N ₂		$N_{\sqrt{m}}$
<i>a</i> ₁	<i>a</i> ₂		$a_{\sqrt{m}}$
• •	• • •	• • •	• • •

- W.l.o.g. a_1 is selected with prob. $\leq \frac{1}{\sqrt{m}}$
- Let $u_i(a_1) = 1$, $u_i(a_j) = 0$ for $i \in N_1$, $u_i(a_j) = 1/m$ otherwise
- $n/\sqrt{m} \le \text{sw}(a_1, \boldsymbol{u}) \le 2n/\sqrt{m}$, whereas $\text{sw}(a_j, \boldsymbol{u}) \le n/m$ for $j \ne 1$
- Distortion is at least

$$\frac{\frac{n}{\sqrt{m}}}{\frac{1}{\sqrt{m}} \cdot \frac{2n}{\sqrt{m}} + \left(1 - \frac{1}{\sqrt{m}}\right) \cdot \frac{n}{m}} \ge \frac{\sqrt{m}}{3} \quad \blacksquare$$

PARTICIPATORY BUDGETING

Porto Alegre Brazil Since 1989 Paris France €100M (2016) Madrid Spain €24M (2016) New York USA \$40M (2017)

THE MODEL

- The total **budget** is *B*
- Each alternative *x* has a cost c_x
- For $X \subseteq A$, the cost c(X) is additive
- Utilities are also additive, that is, $u_i(X) = \sum_{x \in X} u_i(x)$
- The goal is to find $X \subseteq A$ that maximizes the social welfare $sw(X, u) = \sum_{i \in N} u_i(X)$ subject to the budget constraint $c(X) \leq B$

INPUT FORMATS

DISTORTION REDUX

- Distortion allows us to objectively compare input formats, by associating an input format with the distortion of the best voting rule
- Theorem [Benade et al. 2017]: Any randomized voting rule has distortion at least $\Omega(m)$ under knapsack votes
- Proof:
 - Let B = 1, $c(a_j) = 1$ for all $a_j \in A$
 - Define σ : For each $a_j \in A$ we have n/m voters N_j who choose x
 - W.l.o.g. a_1 is selected with prob. ≤ 1/*m*, then let $u_i(a_1) = 1$ for all $i \in N_1$, and $u_i(a_j) = u_i(a_1) = 1/2$ for all $i \in N_j$, $j \neq 1$ ■

RANDOMIZED BOUNDS

[Benade et al., 2017]

METRIC PREFERENCES

- Assume a metric space with metric *d* on space of voters and alternatives
- Preferences are defined by $d(i, x) < d(i, y) \Rightarrow x >_i y$
- Now we want to minimize the social cost, defined as $sc(x, d) = \sum_{i \in N} d(i, x)$

LOWER BOUND

- Theorem [Anshelevich et al. 2015]: The distortion of any deterministic rule under metric preferences is at least 3
- Proof:

• Theorem [Anshelevich et al. 2015]: The distortion of Copeland under metric preferences is at most 5