

Mechanism Design: Recent Advances

Teachers: Ariel Procaccia and Alex Psomas (this time)

## SO FAR

- Revelation Principle
- Single parameter environments
- Second price auctions
- Myerson's lemma
- Myerson's optimal auction
- Cremer-McLean auction for correlated buyers
- Prophet inequalities
- Bulow-Klemperer
- Multiparameter environments
- The VCG mechanism
- Challenges
- Revenue optimal auctions are strange


## TODAY

- Computing the optimal auction
- Reduced forms
- Simple vs Optimal mechanisms
- SRev and BRev are not good approximations
- $\max \{S R e v, B R e v\}$ is
- Langrangian duality
- Dynamic mechanisms


## CAN WE COMPUTE STUFF FOR MANY BIDDERS?

- Assume that buyers are additive over items.
- DSIC: Too many constraints to even write down!
- Standard approach: BIC (Bayesian Incentive Compatible)
- "If everyone is telling the truth, bidding my true values is the optimal strategy"

$$
\begin{aligned}
& \sum_{v_{-i} \sim V_{-i}} \operatorname{Pr}\left[V_{-i}=v_{-i}\right]\left(\sum_{j} v_{i j} x_{i j}(\vec{v})-p_{i}(\vec{v})\right) \\
\geq & \sum_{v_{-i} \sim V_{-i}} \operatorname{Pr}\left[V_{-i}=v_{-i}\right]\left(\sum_{j} v_{i j} x_{i j}\left(\vec{v}^{\prime}\right)-p_{i}\left(\vec{v}^{\prime}\right)\right)
\end{aligned}
$$

## CAN WE COMPUTE STUFF FOR MANY BIDDERS?

$$
\begin{aligned}
& \sum_{v_{-i} \sim V_{-i}} \operatorname{Pr}\left[V_{-i}=v_{-i}\right]\left(\sum_{j} v_{i j} x_{i j}(\vec{v})-p_{i}(\vec{v})\right) \\
\geq & \sum_{v_{-i} \sim V_{-i}} \operatorname{Pr}\left[V_{-i}=v_{-i}\right]\left(\sum_{j} v_{i j} x_{i j}\left(\vec{v}^{\prime}\right)-p_{i}\left(\vec{v}^{\prime}\right)\right)
\end{aligned}
$$

- $n$ bidders, $m$ items, $\left|V_{i}\right|=$ support of $V_{i}$



## CAN WE COMPUTE STUFF FOR MANY BIDDERS?

- Reduced form
$\pi_{i j}\left(\overrightarrow{v_{i}}\right)=\operatorname{Pr}\left[\right.$ item $j$ goes to $i$ if she reports $\left.\overrightarrow{v_{i}}\right]$ - "Interim allocation rule"
- BIC:
$\sum_{j} v_{i j} \pi_{i j}\left(\overrightarrow{v_{i}}\right)-p_{i}\left(\overrightarrow{v_{i}}\right) \geq \sum_{j} v_{i j} \pi_{i j}\left(\overrightarrow{v_{i}^{\prime}}\right)-p_{i}\left(\overrightarrow{v_{i}^{\prime}}\right)$
- Down to $\Theta\left(n m \cdot \max _{i}\left|V_{i}\right|\right)$ variables and constraints!
- New problem: How do we know that there is an auction that corresponds to a given reduced form?


## REDUCED FORMS

- One item, two bidders: $V_{1}=U\{A, B, C\}, V_{2}=$ $U\{D, E, F\}$
- Question: Is the following r.f. feasible?

$$
\begin{aligned}
& \pi_{11}(A)=1 \\
& \pi_{11}(B)=1 / 2 \\
& \pi_{11}(C)=0
\end{aligned}
$$

- $(A, D / E / F) \rightarrow 1$ wi
- $(B / C, D)$ (1posen (D)

- $(C, E) \rightarrow$ on $)^{3}$ out of $5 / 9,2 / 9$ to go)
- $(B, E) \rightarrow$ ?
- $B$ needs to win with probability $1 / 2$
- $E$ needs to win with probability $2 / 3$


## REDUCED FORMS

- Can we check if a reduced form is feasible quickly?
- Border's theorem: The following a necessary and sufficient condition of a reduced form to be feasible. For every item $j$ and every $S_{1} \subseteq$ $V_{1}, \ldots, S_{n} \subseteq V_{n}$
$\sum_{i \in[n]} \sum_{\vec{v}_{i} \in S_{i}} \operatorname{Pr}\left[\vec{v}_{i}\right] \pi_{i}\left(\vec{v}_{i}\right) \leq 1-\prod_{i \in[n]}\left(1-\sum_{\vec{v}_{i} \in S_{i}} \operatorname{Pr}\left[\vec{v}_{i}\right]\right)$
- LHS $=$ Probability that winner has value in $S_{i}$
- RHS = Probability that there is someone with value in $S_{i}$


## REDUCED FORMS

- For every item $j$ and every $S_{1} \subseteq V_{1}, \ldots, S_{n} \subseteq V_{n}$
$\sum_{i \in[n]} \sum_{\vec{v}_{i} \in S_{i}} \operatorname{Pr}\left[\vec{v}_{i}\right] \pi_{i}\left(\vec{v}_{i}\right) \leq 1-\prod_{i \in[n]}\left(1-\sum_{\vec{v}_{i} \in S_{i}} \operatorname{Pr}\left[\vec{v}_{i}\right]\right)$
- That's $2^{\sum_{i}\left|V_{i}\right|}$ conditions!
- [CDW'12]: We can check feasibility in time almost linear in $\sum_{i}\left|V_{i}\right|$
- Key result in solving the succinct LP.

For the remaining we focus on the case of a single additive buyer with $m$ independent items

## CHARACTERIZATIONS OF THE OPTIMAL MECHANISM

- When is the revenue maximizing auction "nice", even for a single buyer?
- For example, when is it optimal to post a price for the grand-bundle?
- Grand-bundle = all the items as a single bundle
- There are necessary and sufficient conditions! [DDT 15]
- Unfortunately, these conditions are not very intuitive
- Measure theory conditions
- Very interesting outcomes though:
- For every number of items $m$, there exists a $c$, such that the optimal mechanism for $m$ i.i.d. $U[c, c+1]$ items is a grandbundling mechanism
- On the other hand, for every $c$, there exists a number $m_{0}$, such that for all $m>m_{0}$, the grand-bundle mechanism is not optimal for $m$ i.i.d. $U[c, c+1]$ items!


## SIMPLE AND APPROXIMATELY OPTIMAL MECHANISMS

- Is selling only the grand bundle a good (constant) approximation to the optimal mechanism?
- No!
- Not even a good approximation to SRev


## BRev VS OPT

Example:

- $v_{i} \in\left\{0, M^{i}\right\}$, where $M$ is a large number
- $\operatorname{Pr}\left[v_{i}=M^{i}\right]=1 / M^{i}$
- $\operatorname{Rev}\left(D_{i}\right)=1$
- So, SRev $=m$
- BRev $\leq \max _{k} M^{k} \cdot \operatorname{Pr}\left[\sum_{j} v_{j} \geq M^{k}\right]$
- $\operatorname{Pr}\left[\sum_{j} v_{j} \geq M^{k}\right] \leq \sum_{j \geq k} \operatorname{Pr}\left[v_{j}=M^{j}\right]=M^{-j}$
- $\sum_{j \geq k} M^{-j}=M^{1-k} /(M-1)$
- $B R e v \leq 1+1 /(M-1)$


## SIMPLE AND APPROXIMATELY OPTIMAL MECHANISMS

- Is selling each item separately a good (constant) approximation to the optimal mechanism?
- No!
- Example a bit too complicated...
- $m$ i.i.d. items from a "equal revenue" distribution: $F(x)=1-1 / x$


## SIMPLE AND APPROXIMATELY OPTIMAL MECHANISMS

- What about the best of $S R e v$ and $B R e v$ ?
- Theorem [BILW 14]:

$$
\max \{S R e v, B R e v\} \geq \frac{1}{6} R e v
$$

- Some definitions
- $m=$ number of items
- $V_{j}$ random variable for the value of item $j$
- $f_{j}\left(v_{j}\right)=\operatorname{Pr}\left[V_{j}=v_{j}\right]$
- $R_{j}=\left\{\vec{v}: v_{j} \geq v_{k}, \forall k \in[m]\right\}$
- Set of profiles where $j$ is the favorite item


## PROOF SKETCH

- Two parts:

1. Rev $\leq$ Benchmark
2. Benchmark $\leq 6 \max \{S R e v, B R e v\}$

- Today: Part 1


## A DETOUR: LAGRANGIAN DUALITY

- Optimization

$$
\max x_{1}+3 x_{2}+5 x_{3}
$$

## Subject to

$$
\begin{gathered}
x_{2}+x_{3} \leq 10 \\
x_{1} \leq 2
\end{gathered}
$$

- Lagrangian function

$$
\mathcal{L}(x, \lambda)=x_{1}+3 x_{2}+5 x_{3}+\lambda\left(10-x_{2}-x_{3}\right)
$$

## A DETOUR: LAGRANGIAN DUALITY

- Lagrangian function
$\mathcal{L}(x, \lambda)=x_{1}+3 x_{2}+5 x_{3}+\lambda\left(10-x_{2}-x_{3}\right)$
- Let OPT be the optimal solution to the optimization problem
- Game:
- We pick $\lambda \geq 0$
- Adversary picks $x_{1}, \ldots$ that satisfy all the constraints except the one we "Lagrangified" in order to maximize $\mathcal{L}(\vec{x}, \lambda)$
- Theorem: $\forall \lambda \geq 0, O P T \leq \max _{\vec{x}} \mathcal{L}(\vec{x}, \lambda)$


## A DETOUR: LAGRANGIAN DUALITY

- Lagrangian function

$$
\mathcal{L}(x, \lambda)=x_{1}+3 x_{2}+5 x_{3}+\lambda\left(10-x_{2}-x_{3}\right)
$$

- Intuition:
- If $\lambda=0$, then it's as if we dropped that constraint
- If $\lambda=\infty$, if we violate the Lagrangified constraint we pay an infinite penalty. But, if we strictly satisfy it we get a bonus


## A DETOUR: LAGRANGIAN DUALITY

- Why would this be useful?
- Sometimes you know how to solve a problem if you "remove" a constraint
- Canonical example: Find the shortest path between $s$ and $t$, that also uses at most $k$ edges
- Lagrangify the "at most $k$ edges" constraint.


## BACK TO REVENUE

- For now, single buyer
- Objective:

$$
\max \sum_{v \in V} p(v) \cdot \operatorname{Pr}[\text { value }=v]
$$

- Constraints:
- IC: $\forall v, v^{\prime} \in V: v x(v)-p(v) \geq v x\left(v^{\prime}\right)-p\left(v^{\prime}\right)$
- IR: $\forall v \in V: v x(v)-p(v) \geq 0$
- Feasibility: $\forall v \in V: 1 \geq x(v) \geq 0$


## REVENUE

$$
\begin{gathered}
\max \sum_{v \in V} p(v) \cdot f(v) \\
\forall v \in V, v^{\prime} \in V \cup\{\perp\}: v x(v)-p(v) \geq v x\left(v^{\prime}\right)-p\left(v^{\prime}\right) \\
\forall v \in V: 1 \geq x(v) \geq 0
\end{gathered}
$$

- Lagrangify the IC+IR constraint!
$\mathcal{L}=\sum_{v \in V} f(v) p(v)+$
$\sum_{v \in V} \sum_{v^{\prime} \in V \cup\{\perp\}} \lambda\left(v, v^{\prime}\right) \cdot\left(v x(v)-p(v)-v x\left(v^{\prime}\right)+p\left(v^{\prime}\right)\right)$


## REVENUE

- Re-arrange:
$\mathcal{L}=\sum_{v \in V} x(v)\left(\sum_{v^{\prime} \in V \cup\{\perp\}} v \lambda\left(v, v^{\prime}\right)-\sum_{v^{\prime} \in V} v^{\prime} \lambda\left(v^{\prime}, v\right)\right)$
$+\sum_{v \in V} p(v)\left(f(v)+\sum_{v^{\prime} \in V} \lambda\left(v^{\prime}, v\right)-\sum_{v^{\prime} \in V \cup\{\perp\}} \lambda\left(v, v^{\prime}\right)\right)$
- Game:
- We pick $\lambda\left(v, v^{\prime}\right) \geq 0$ for all $v, v^{\prime}$
- Adversary maximizes $\mathcal{L}$ subject to $x(v) \in[0,1]$
- Goal: make $\mathcal{L}^{*}$ as small as possible


## REVENUE

$\mathcal{L}=\sum_{v \in V} x(v)\left(\sum_{v^{\prime} \in V \cup\{\perp\}} v \lambda\left(v, v^{\prime}\right)-\sum_{v^{\prime} \in V} v^{\prime} \lambda\left(v^{\prime}, v\right)\right)$
$+\sum_{v \in V} p(v)\left(f(v)+\sum_{v^{\prime} \in V} \lambda\left(v^{\prime}, v\right)-\sum_{v^{\prime} \in V \cup\{\perp\}} \lambda\left(v, v^{\prime}\right)\right)$

- Observation: no constraints on $p(v)$
- Therefore:

$$
f(v)+\sum_{v^{\prime} \in V} \lambda\left(v^{\prime}, v\right)-\sum_{v^{\prime} \in V \cup\{\perp\}} \lambda\left(v, v^{\prime}\right)=0
$$

- Otherwise, $\mathcal{L}^{*}=\infty$ !


## REVENUE




## REVENUE

- Simplify:
$\mathcal{L}=\sum_{v \in V} x(v)\left(v f(v)+\sum_{v^{\prime} \in V} v \lambda\left(v^{\prime}, v\right)-\sum_{v^{\prime} \in V} v^{\prime} \lambda\left(v^{\prime}, v\right)\right)$
$=\sum_{v \in V} f(v) x(v)\left(v-\frac{1}{f(v)} \sum_{v^{\prime} \in V} \lambda\left(v^{\prime}, v\right)\left(v^{\prime}-v\right)\right)$
- Game:
- We pick a flow $\lambda$
- Adversary tries to maximize $\mathcal{L}(\lambda)$
- Adversary will pointwise maximize

$$
\Phi(v)=v-\frac{1}{f(v)} \sum_{v^{\prime} \in V} \lambda\left(v^{\prime}, v\right)\left(v^{\prime}-v\right)
$$

## EXAMPLE

$$
\begin{aligned}
& D=U\{1,2,3,4,5\} \\
& \Phi(v)=v-\frac{1}{f(v)} \sum_{v^{\prime} \in V} \lambda\left(v^{\prime}, v\right)\left(v^{\prime}-v\right) \\
& \lambda(v, \perp)=f(v) \\
& \Phi(v)=v
\end{aligned}
$$

## EXAMPLE

$$
\begin{aligned}
& \cdot D=U\{1,2,3,4,5\} \\
& \Phi(v)=v-\frac{1}{f(v)} \sum_{v^{\prime} \in V} \lambda\left(v^{\prime}, v\right)\left(v^{\prime}-v\right)
\end{aligned}
$$

- $\Phi(5)=5$
- $\Phi(4)=4-\frac{1}{1 / 5} \cdot \frac{1}{5} \cdot(5-4)=3$
- $\Phi(3)=3-\frac{1}{1 / 5} \cdot \frac{2}{5} \cdot(4-3)=1$

Upper Bound $=\frac{5+3+1}{5}=\frac{9}{5}$
What's OPT?

## PROOF SKETCH

- Same idea for many items
- Have to find a good "flow"



## PROOF SKETCH

- Lemma 1: Rev is at most

$$
\begin{aligned}
& \sum_{\vec{v}} \sum_{j} f(\vec{v}) \cdot x_{j}(\vec{v}) \cdot \phi_{j}\left(v_{j}\right) \cdot \mathbb{I}\left\{\vec{v} \in R_{j}\right\} \quad(\operatorname{SINGLE}) \\
& +\sum_{\vec{v}} \sum_{j} f(\vec{v}) \cdot x_{j}(\vec{v}) \cdot v_{j} \cdot \mathbb{I}\left\{\vec{v} \notin R_{j}\right\}(\text { NONFAV })
\end{aligned}
$$

- Intuition:
- SINGLE = Favorite item contributes its virtual value
- NONFAV = Every other item contributes its value
- Theorem [BILW 14]: $\max \{S R e v, B R e v\} \geq \frac{1}{6} R e v$
- Similar results exist for many buyers, even beyond additive valuation functions


## DYNAMIC MECHANISMS

- Slight twist to the model
- Two items: one today, one tomorrow

Game:

- $D_{1}, D_{2}$ are public knowledge
- Buyer learns $v_{1} \sim D_{1}$, submits $b_{1}$
- Item 1 and payments according to $x_{1}\left(b_{1}\right), p_{1}\left(b_{1}\right)$
- Buyer learns $v_{2} \sim D_{2}$, submits $b_{2}$
- Item 2 and payments according to

$$
x_{2}\left(b_{1}, b_{2}\right), p_{2}\left(b_{1}, b_{2}\right)
$$

## DYNAMIC MECHANISMS

- When submitting $b_{1}$ buyer has to take into account how this will affect the (expected) utility she'll get from item 2
- $D_{1}$ and $D_{2}$ could be correlated
- For now assume independence
- Independent?
- Shouldn't Myerson + Myerson be optimal?
- Even if not optimal, it's definitely a good approximation!


## DYNAMIC MECHANISMS

- $v_{1}=2^{i}$ with probability $2^{-i}, i=1 \ldots n$
- $v_{2}=2^{i}$ with probability $2^{-i}, i=1 \ldots 2^{n}$
- With the remaining probability they're equal to zero


## Poll

What's (roughly) $\operatorname{Rev}\left(D_{2}\right)$ and $E\left[D_{2}\right]$ ?

1. $n$ and $2^{n}$
2. 2 and $n$
3. 2 and $2^{n}$
4. $2^{n}$ and $2^{n}$

## DYNAMIC MECHANISMS

- Myerson + Myerson = constant
- Consider the following auction
- $x_{1}\left(b_{1}\right)=1, p_{1}\left(b_{1}\right)=b_{1}$
- $x_{2}\left(b_{1}, b_{2}\right)=b_{1} / E\left[D_{2}\right], p_{2}\left(b_{1}, b_{2}\right)=0$
- So first day you pay your bid $b_{1}$
- Second you get it for free w.p. $b_{1} / E\left[D_{2}\right]$
- $E\left[\right.$ utility of reporting $\left.b_{1}\right]$ ?
- ut.from day $1=v_{1}-b_{1}$
- $E\left[\right.$ ut.from day 2] $=\sum_{v_{2}} \operatorname{Pr}\left[v_{2}\right] v_{2} \cdot \frac{b_{1}}{E\left[D_{2}\right]}=b_{1}$
- So, $E\left[\right.$ ut. of $\left.b_{1}\right]=v_{1}$ !
- Rev $=E\left[v_{1}\right]=n$


## SO FAR

- Revelation Principle
- Single parameter environments
- Second price auctions
- Myerson's lemma
- Myerson's optimal auction
- Cremer-McLean auction for correlated buyers
- Prophet inequalities
- Bulow-Klemperer
- Multiparameter environments
- The VCG mechanism
- Revenue optimal auctions are strange
- Computing the optimal auction
- Reduced forms
- Simple vs Optimal mechanisms
- SRev and BRev are not good approximations
- max\{SRev, BRev\} is
- Langrangian duality
- Dynamic mechanisms are strange

