
ALGOSTRUTH JUSTICE
Mechanism	Design:	
Recent	Advances

Teachers:	Ariel	Procaccia and	Alex	Psomas (this	time)	



SO	FAR
• Revelation	Principle
• Single	parameter	environments

◦ Second	price	auctions
◦ Myerson’s	lemma
◦ Myerson’s	optimal	auction
◦ Cremer-McLean	auction	for	correlated	buyers
◦ Prophet	inequalities	
◦ Bulow-Klemperer

• Multiparameter	environments
◦ The	VCG	mechanism
◦ Challenges
◦ Revenue	optimal	auctions	are	strange



TODAY
• Computing	the	optimal	auction

◦ Reduced	forms
• Simple	vs Optimal mechanisms

◦ <=>? and	@=>? are	not	good	approximations
◦ max <=>?, @=>? is
◦ Langrangian duality

• Dynamic mechanisms



CAN	WE	COMPUTE	STUFF	FOR	MANY	

BIDDERS?

• Assume	that	buyers	are	additive	over	items.
• DSIC:	Too	many	constraints	to	even	write	
down!

• Standard	approach:	BIC	(Bayesian	Incentive	
Compatible)
◦ “If	everyone	is	telling	the	truth,	bidding	my	true	
values	is	the	optimal	strategy”
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CAN	WE	COMPUTE	STUFF	FOR	MANY	
BIDDERS?
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• K bidders,	R items,	 <> =support	of	<>

How	many	variables?
1. Θ(KR∏> <> ) 3. Θ(∑> |<>|)
2. Θ(Kh ∑> |<>|) 4. Beats	me

Poll	

???



CAN	WE	COMPUTE	STUFF	FOR	MANY	

BIDDERS?

• Reduced	form
<=> ?= = Pr[item	D goes	to	G if	she	reports	?= ]

◦ “Interim	allocation	rule”
• BIC:
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?=><=> ?=′ − S=(?=′)

• Down to Θ(Z[ ⋅ []^= _= ) variables	and	
constraints!

• New	problem: How do we know that there is
an auction that corresponds to a given	reduced	
form?



REDUCED	FORMS

• One	item,	two	bidders:	89 = ;{=, >, ?},	8A =
;{B, C, D}

• Question: Is the following	r.f.	feasible?
O99 = = 1

O99 > = 1/2

O99 ? = 0 OA9 D = 0

OA9 C = 5/9

OA9 B = 2/3

• (=, B/C/D) → 1	wins	(O99 = = 1)
• (>/?, B) → 2	wins	(OA9 B = 2/3)
• >, D → 1	wins	(1/3 out	of	1/2,	1/6 to	go)
• ?, C → 2	wins	(1/3 out	of	5/9,	2/9 to	go)
• >, C → ???

◦ > needs	to	win	with	probability	1/2
◦ C needs	to	win	with	probability	2/3	



REDUCED	FORMS

• Can	we	check	if	a	reduced	form	is	feasible	
quickly?

• Border’s theorem: The following a necessary	
and	sufficient	condition	of	a	reduced	form		to	
be	feasible.	For	every	item	G and	every	HI ⊆
KI,… , HN ⊆ KN

O
P∈[N]

O
TU∈VU

Pr Y⃗P ZP Y⃗P ≤ 1 − ^
P∈[N]

(1 − O
TU∈VU

Pr[Y⃗P])

• LHS = Probability	that	winner	has	value	in	HP
• RHS = Probability	that	there	is	someone	with	
value	in	HP



REDUCED	FORMS

• For	every	item	3 and	every	78 ⊆ :8,… , 7= ⊆ :=
>
?∈[=]

>
CD∈ED

Pr H⃗? I? H⃗? ≤ 1 − M
?∈[=]

(1 − >
CD∈ED

Pr[H⃗?])

• That’s 2∑D VD conditions!
• [CDW’12]:	We	can	check	feasibility	in	time	
almost	linear	in	∑? |:?|
◦ Key result in solving the succinct LP.



For	the	remaining	we	focus	on	the	case	of	a	
single	additive	buyer	with	7 independent	

items



CHARACTERIZATIONS	OF	THE	

OPTIMAL	MECHANISM
• When	is	the	revenue	maximizing	auction	“nice”,	even	for	
a	single	buyer?

• For	example,	when	is	it	optimal	to	post	a	price	for	the	
grand-bundle?
◦ Grand-bundle	=	all	the	items	as	a	single	bundle

• There	are	necessary	and	sufficient	conditions!	[DDT	15]

• Unfortunately,	these	conditions	are	not	very	intuitive
◦ Measure	theory	conditions

• Very	interesting	outcomes	though:
◦ For	every	number	of	items	Y,	there	exists	a	Z,	such	that	the	
optimal	mechanism	for	Y i.i.d.	\ Z, Z + 1 items	is	a	grand-
bundling	mechanism

◦ On	the	other	hand,	for	every	Z,	there	exists	a	number	Y^,	
such	that	for	all	Y > Y^,	the	grand-bundle	mechanism	is	not
optimal	for	Y i.i.d.	\[Z, Z + 1] items!



SIMPLE	AND	APPROXIMATELY	
OPTIMAL	MECHANISMS

• Is	selling	only	the	grand	bundle	a	good	
(constant)	approximation	to	the	optimal	
mechanism?

• No!
◦ Not	even	a	good	approximation	to	JKLM



!"#$ VS	OPT

Example:
• $3 ∈ {0,83},	where	8 is	a	large	number
• Pr $3 = 83 = 1/83

• "#$ F3 = 1
◦ So,	H"#$ = I

• !"#$ ≤ max
K
8K ⋅ Pr[∑O $O ≥ 8K]

◦ Pr[∑O $O ≥ 8K] ≤ ∑ORK Pr $O = 8O = 8SO

◦ ∑ORK8SO =8TSK/(8 − 1)
• !"#$ ≤ 1 + 1/(8 − 1)



SIMPLE	AND	APPROXIMATELY	

OPTIMAL	MECHANISMS

• Is	selling	each	item	separately	a	good	
(constant)	approximation	to	the	optimal	

mechanism?

• No!
◦ Example a bit too complicated…
◦ I i.i.d.	items	from	a	“equal	revenue”	

distribution:	R S = 1 − 1/S



SIMPLE	AND	APPROXIMATELY	
OPTIMAL	MECHANISMS

• What	about	the	best	of	<=>? and	B=>??
• Theorem	[BILW	14]:

max <=>?, B=>? ≥
1
6=>?

• Some	definitions
◦ Q = number	of	items
◦ ST random	variable	for	the	value	of	item	W
◦ XT ?T = Pr[ST = ?T]
◦ =T = {?⃗ ∶ ?T ≥ ?\, ∀^ ∈ Q }

• Set	of	profiles	where	W is	the	favorite	item	



PROOF	SKETCH

• Two	parts:
1. 678 ≤ :7;<ℎ>?@A

2. :7;<ℎ>?@A ≤ 6max{G678, :678}

• Today:	Part	1



A	DETOUR:	LAGRANGIAN DUALITY

• Optimization
max 89 + 38< + 58>

Subject	to
8< + 8> ≤ 10

89 ≤ 2
…

• Lagrangian function
ℒ 8, O = 89 + 38< + 58> + O(10 − 8< − 8>)



A	DETOUR:	LAGRANGIAN DUALITY

• Lagrangian	function
ℒ :, < = :> + 3:A + 5:C + <(10 − :A − :C)
• Let	OPT	be	the	optimal	solution	to	the	
optimization	problem

• Game:
◦ We pick	< ≥ 0
◦ Adversary picks :>, … that	satisfy	all	the	
constraints	except the	one	we	“Lagrangified”	in	
order	to	maximize	ℒ(:⃗, <)

• Theorem: ∀< ≥ 0, _`a ≤ maxc⃗ ℒ(:⃗, <)



A	DETOUR:	LAGRANGIAN DUALITY

• Lagrangian	function
ℒ :, < = :> + 3:A + 5:C + <(10 − :A − :C)
• Intuition:

◦ If	< = 0,	then	it’s	as	if	we	dropped	that	
constraint

◦ If < = ∞,	if	we	violate	the	Lagrangified
constraint	we	pay	an	infinite	penalty.	But,	if	we	
strictly	satisfy	it	we	get	a	bonus



A	DETOUR:	LAGRANGIAN DUALITY

• Why	would	this	be	useful?
• Sometimes you know how to solve a
problem if you “remove” a constraint
◦ Canonical	example:	Find	the	shortest	path	
between	L and	M,	that	also	uses	at	most	O edges
• Lagrangify the “at most O edges”	constraint.



BACK	TO	REVENUE

• For	now,	single	buyer
• Objective:

maxC

D∈F

G H ⋅ Pr[HLMNO = H]

• Constraints:
◦ IC:	∀H, HT ∈ U: HV H − G H ≥ HV HT − G HT

◦ IR:	∀H ∈ U: HV H − G H ≥ 0

◦ Feasibility:	∀H ∈ U: 1 ≥ V H ≥ 0



REVENUE

max)

*∈,

- . ⋅ 0(.)

∀. ∈ 4, .6 ∈ 4 ∪ ⊥ : .: . − - . ≥ .: .6 − - .6

∀. ∈ 4: 1 ≥ : . ≥ 0

• Lagrangify the	IC+IR	constraint!

ℒ = )

*∈,

0 . -(.) +

)

*∈,

)

*S∈,∪ T

U ., .6 ⋅ (.: . − - . − .: .6 + -(.6))



REVENUE

• Re-arrange:

ℒ = /
0∈2

3 4 ( /
06∈2∪ 8

49 4, 4; − /
06∈2

4;9(4;, 4))

+/
0∈2

?(4)( @ 4 + /
06∈2

9 4′, 4 − /
06∈2∪ 8

9(4 , 4′) )

• Game:
◦ We	pick	9 4, 4; ≥ 0 for	all	4, 4′
◦ Adversary	maximizes	ℒ subject	to	3 4 ∈ [0,1]

• Goal:	make	ℒ∗ as	small	as	possible



REVENUE

ℒ =(

)∈+

, - ( (

)/∈+∪ 1

-2 -, -4 − (

)/∈+

-42(-4, -))

+(

)∈+

8(-)( 9 - + (
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2 -′, - − (

)/∈+∪ 1

2(- , -′) )

• Observation:	no	constraints	on	8(-)
• Therefore:

9 - + (

)/∈+

2 -′, - − (

)/∈+∪ 1

2 - , -′ = 0

• Otherwise,	ℒ∗ = ∞!



REVENUE

& ' + )
*+∈-

. '/, ' − )
*+∈-∪ 3

. ' , '′ = 0

'′

⊥

'…

9:;<=>
&('
)

.(' , '′)

.('/, ')

.(', ⊥) .s	form	a	flow!!



REVENUE

• Simplify:

ℒ = 0
1∈3

4 5 (57 5 + 0
19∈3

5: 5;, 5 − 0
19∈3

5;:(5;, 5))

= 0
1∈3

7 5 4(5) 5 −
1

7 5
0
19∈3

: 5;, 5 (5; − 5)

• Game:
◦ We	pick	a	flow	λ
◦ Adversary	tries	to	maximize	ℒ(:)

• Adversary	will	pointwise	maximize	

Φ 5 = 5 −
1

7 5
0
19∈3

: 5;, 5 (5; − 5)



EXAMPLE

• ' = ){1,2,3,4,5}

2 4 5

⊥

31

345678
Φ : = : −

1
< :

=
>?∈A

B :C, : (:C − :)

⁄1 5⁄1 5 ⁄1 5 ⁄1 5 ⁄1 5

⁄1 5 ⁄1 5 ⁄1 5
⁄1 5⁄1 5

B :, ⊥ = <(:)
Φ : = :

)GG86 H45IJ = K ' =3



EXAMPLE

• ' = ){1,2,3,4,5}

2 4 5⊥ 31

345678

Φ : = : −
1

< :
=

>?∈A

B :C, : (:C − :)

⁄1 5
⁄1 5 ⁄1 5

⁄1 5

⁄1 5

)GG86 H45IJ =
5 + 3 + 1

5
=
9

5

⁄1 5

⁄2 5⁄3 5⁄4 51

• Φ 5 = 5

• Φ 4 = 4 −
M

⁄M N
⋅
M

N
⋅ 5 − 4 = 3

• Φ 3 = 3 −
M

⁄M N
⋅
P

N
⋅ 4 − 3 = 1

• Φ 2 = 2 −
M

⁄M N
⋅
Q

N
⋅ 3 − 2 = −1

• Φ 1 = 1 −
M

⁄M N
⋅
R

N
⋅ 2 − 1 = −3

What’s	OPT?



PROOF	SKETCH
• Same	idea	for	many	items
• Have to find a good “flow”



PROOF	SKETCH

• Lemma	1:	234 is	at	most

9
:

9
;

< 4⃗ ⋅ ?; 4⃗ ⋅ @; 4; ⋅ A{4⃗ ∈ 2;} (FGHIJK)

+9
:

9
;

<(4⃗) ⋅ ?; 4⃗ ⋅ 4; ⋅ A 4⃗ ∉ 2; (HOHPQR)

• Intuition:
◦ SINGLE	=	Favorite	item	contributes	its	virtual	value
◦ NONFAV	=	Every	other	item	contributes	its	value	

• Theorem	[BILW	14]: max F234, i234 ≥ k
l
234

◦ Similar	results	exist	for	many	buyers,	even	beyond	
additive	valuation	functions



DYNAMIC	MECHANISMS

• Slight	twist	to	the	model
• Two	items:	one	today,	one	tomorrow
Game:
• ?@, ?A are	public	knowledge
• Buyer	learns	H@~?@,	submits	J@
• Item	1	and	payments	according	to	
L@ J@ , M@(J@)

• Buyer	learns	HA~?A, submits	JA
• Item	2	and	payments	according	to	
LA(J@, JA),	MA(J@, JA)



DYNAMIC	MECHANISMS

• When	submitting	78 buyer	has	to	take	into	
account	how	this	will	affect	the	(expected)	

utility	she’ll	get	from	item	2

• I8 and	IJ could	be	correlated
• For	now	assume	independence
• Independent?

◦ Shouldn’t	Myerson	+	Myerson	be	optimal?
◦ Even	if	not	optimal,	it’s	definitely	a	good	
approximation!



DYNAMIC	MECHANISMS

• ,- = 20 with	probability	2<0,	> = 1…A
• ,B = 20 with	probability	2<0, > = 1…2C

◦ With	the	remaining	probability	they’re	equal	to	
zero

What’s	(roughly)	PQ, RB and	T[RB]?
1. A and	2C 3. 2	and	A
2. 2 and	2C 4. 2C and	2C

Poll	

???



DYNAMIC	MECHANISMS

• Myerson	+	Myerson	=	constant
• Consider	the	following	auction

◦ ?@ A@ = 1, D@ A@ = A@
◦ ?E A@, AE = A@/G[IE],	DE A@, AE = 0
◦ So	first	day	you	pay	your	bid	A@
◦ Second	you	get	it	for	free	w.p.	A@/G[IE]

• G OPQRQPS TU VWDTVPQXY A@ ?
◦ OP. UVT[ \]S 1 =	^@ − A@
◦ G OP. UVT[ \]S 2 = ∑bc Pr[^E] ^E ⋅

fg
h ic

= A@
• So,	G OP. TU A@ = ^@!
• kW^ = G ^@ = X



SO	FAR
• Revelation	Principle
• Single	parameter	environments

◦ Second	price	auctions
◦ Myerson’s	lemma
◦ Myerson’s	optimal	auction
◦ Cremer-McLean	auction	for	correlated	buyers
◦ Prophet	inequalities	
◦ Bulow-Klemperer

• Multiparameter	environments
◦ The	VCG	mechanism	
◦ Revenue	optimal	auctions	are	strange
◦ Computing	the	optimal	auction

• Reduced	forms
◦ Simple	vs	Optimal	mechanisms

• HIJK and	LIJK are	not	good	approximations
• max HIJK, LIJK is
• Langrangian duality

◦ Dynamic	mechanisms	are	strange


