

Mechanism Design: Multi-Dimensional Mechanism Design

Teachers: Ariel Procaccia and Alex Psomas (this time)

SO FAR

- Revelation Principle
- Single parameter environments
- Second price auctions
- Myerson's lemma
- Myerson's optimal auction
- Cremer-McLean auction for correlated buyers
- Prophet inequalities
- Bulow-Klemperer

TODAY

- Multidimensional environments
- The VCG mechanism
- Challenges
- Revenue optimal auctions are strange

COMBINATORIAL AUCTIONS

- n buyers
- m items
- Result holds for arbitrary feasibility sets
- Agent i has an (arbitrary) value function v_{i} from subsets of items to non-negative reals
- Complementarities: $v_{i}(\{1\})=1, v_{i}(\{2\})=$ $2, v_{i}(\{1,2\})=100$
- Substitutes: $v_{i}(\{1\})=10, v_{i}(\{2\})=$ $10, v_{i}(\{1,2\})=12$
- Or anything else really: $v_{i}(\{1\})=10, v_{i}(\{2\})=$ $10, v_{i}(\{1,2\})=0$

VCG

- Goal: find a truthful (DSIC) and feasible mechanism that maximizes social welfare $\operatorname{argmax}_{\text {feasible }} s=\left(S_{1}, \ldots, S_{n}\right) \sum_{i} v_{i}\left(S_{i}\right)$

VCG

- Let's try our single dimensional approach
- Commit to the allocation rule x that maximizes social welfare, and then find appropriate payments
- $x(\vec{b})=\operatorname{argmax}_{S} \sum_{i} b_{i}\left(S_{i}\right)$
- b_{i} here is a reported valuation function, not a number
- Let S^{*} be the social welfare maximizing allocation
- What about payments?
- Perhaps try to prove another "Myerson’s Lemma"?
- Not clear what monotonicity is...
- Not clear what the "critical bid" is (bids are functions)...

VICKREY-CLARKE-GROVES

- Key idea: "externality"
- How much pain does your existence cause?
- Aka, how much does your presence hurt everyone else's value?
- That's how much you should pay
- In retrospect, same idea as second price auction
- I pay exactly the maximum social welfare when I'm not there

VICKREY-CLARKE-GROVES

$$
p_{i}(\vec{b})=\underbrace{\max _{S} \sum_{j \neq i} b_{j}\left(S_{j}\right)}_{\text {without } i}-\underbrace{\sum_{j \neq i} b_{j}\left(S_{j}^{*}\right)}_{\text {with } i}
$$

- $p_{i}(\vec{b}) \geq 0$
- Why?
- Claim: VCG is DSIC

VICKREY-CLARKE-GROVES

Proof:

- Fix i and b_{-i}
- Let S^{*} be the social welfare maximizing allocation when i submits b_{i}

$$
u_{i}=\underbrace{v_{i}\left(S_{i}^{*}\right)+\sum_{j \neq i} b_{j}\left(S_{j}^{*}\right)}_{\text {(A) }}-\underbrace{\max _{S} \sum_{j \neq i} b_{j}\left(S_{j}\right)}_{\text {(B) }}
$$

- Observation: (B) is out of i 's control
- Thought experiment: i can directly pick any S^{*}
- As opposed to picking b_{i} (that affects S^{*})
- What would she pick?
- Maximize (A)
- What is our mechanism doing?

CHALLENGES

- Preference elicitation
- Bidders report their valuation function
- For m items each bidder has to report more or less 2^{m} numbers
- Ok, so no direct revelation mechanisms
- Keep everything on a "need to know" basis
- Canonical approach is the English/ascending auction
- Have an increasing price p_{i} for every item.
- When there is a single bidder left give it to them for that price

FUN STORY

[CRAMTON, SCHWARTZ 2000]

- Auction for spectrum rights in the US
- Iterative auction where companies bid for licenses (items) to broadcast over specific bands of the electromagnetic in certain areas
- Bids are public
- FCC raised ~23 billion USD from 1994 to 1998 via 16 such auctions

FUN STORY

- Mercury PCS and High Plains Wireless are having a bidding war for license \#264 for Lubbock, Texas.
- In the meantime, High Plains Wireless is currently the highest bidder for license \#013 for Amarillo, Texas (not much competition for this license)
- Mercury PCS outbids High Plains Wireless in \#013 in round 68 (first time Mercury PCS made a bid for that area)
- The last three digits of the bid: 264
- Next bid of Mercury PCS on \#264 had last three digits "013"
- In other words "Stay away from 264, otherwise 013 will cost you a lot more"

ANOTHER FUN STORY

[MCMILLAN. SELLING SPECTRUM RIGHTS]

- What a rookie mistake...
- Just run a sealed-bid auction...
- New Zealand 1990: Television broadcasting licenses auctioned off via simultaneous sealed-bid Vickrey auctions
- Government projected it would make 250 million
- Made 34
- Even funnier:
- A company bid 7 million NZ\$ for a license. Ended up paying 5000
- Another license had highest bid 100,000. Second highest: 6.
- A university student bid NZ\$1 for a television license for a small city; no one else bid anything so he won and paid nothing

CHALLENGES

- Computational tractability
- Even when valuation functions are very simple, maximizing welfare can be NP-hard
- Example: Single Minded buyers.
- Bidder i has value v_{i} for some subset S_{i}, and zero for everything else
- Maximizing welfare is essentially the same as finding the largest Independent Set
» Vertices are bidders
» Edges are items
» $S_{i}=$ edges adjacent to vertex/bidder i

CHALLENGES

- Computational tractability
- What about approximations?
- Say you have an algorithm that can find in
polynomial time an α approximation to the optimal (social welfare maximizing) allocation
- In fact we do have such algorithms for single minded bidders (\sqrt{m} approximation)
- Almost-VCG payments are not incentive compatible
- We need to be able to maximize social welfare in order to compute the externality of each agent
- If we can only do this approximately, the payments are not the VCG payments, and truthfulness cannot be guaranteed

CHALLENGES

- Horrendous for revenue
- As opposed to second price which was pretty good (by Bulow-Klemperer)
- 2 bidders, A and B, and 2 items
- A wants both or nothing
- $v_{A}(\{1,2\})=1, v_{A}(S)=0$ for all $S \neq\{1,2\}$
- B only wants item 1
- $v_{B}(\{1,2\})=v_{B}(\{1\})=1, v_{B}=0$ otherwise

POLL

- 2 bidders, A and B, and 2 items
- A wants both or nothing
- $v_{A}(\{1,2\})=1, v_{A}(S)=0$ for all $S \neq\{1,2\}$
- B only wants item 1
- $v_{B}(\{1,2\})=v_{B}(\{1\})=1, v_{B}=0$ otherwise

Question What's the allocation? What's the payment?

1. A gets both, pays $1 \quad 3$. B gets $\{1\}$, pays 1
2. A gets both, pays $0 \quad$ 4. B gets both, pays 1

VCG IS HORRIBLE FOR REVENUE

- Suppose a third bidder C shows up
- $v_{C}(\{1,2\})=v_{C}(\{2\})=1$, and zero otherwise
- What will VCG do?
- Social welfare maximizing solution is to give item 1 to B and item 2 to C
- What are the payments?
- Zero!

THE PLOT THICKENS: REVENUE

- For now one buyer
- mitems
- Focus on additive buyers
- $v(S)=\sum_{j \in S} v_{j}$
- Can we efficiently compute VCG in this setting?
- Again, Bayesian approach
- $D_{j}=$ distribution for item j

COMPUTATIONAL PROBLEM

- Can we at least compute the optimal auction?
- Yes! Linear program!
- $x(v)=$ variable for the allocation of the agent when she reports v
- $p(v)=$ variable for the payment of the agent when she reports v

COMPUTATIONAL PROBLEM

- Objective:

- Constraints:
- IC: $\forall v, v^{\prime}: v x(v)-p(v) \geq v x\left(v^{\prime}\right)-p\left(v^{\prime}\right)$
- IR: $\forall v: v x(v)-p(v) \geq 0$
- Feasibility: $\forall v: 1 \geq x(v) \geq 0$
- Great!
- What does the optimal auction look like?
- That's a good question...

SELLING SEPARATELY IS NOT OPTIMAL

- 2 items
- $v_{i}=$ value for item i
- Additive buyer
- Value for both items is $v_{1}+v_{2}$
- $D_{1}=D_{2}=U\{1,2\}$
- Idea \#1: Run optimal auction for each item
- Posting a price for item i of 1 makes 1
- Posting a price for item i of 2 makes $2 \cdot 1 / 2=1$
- Total (expected) revenue $=2$

SELLING SEPARATELY IS NOT OPTIMAL

- Selling separately makes 2
- Idea \#2: Bundle the items!
- What if we post a price of $3 \$$ for both items (as a bundle)?
- You pay $\$ 3$ and get both, or you get nothing.
- $\operatorname{Pr}\left[v_{1}+v_{2} \geq 3\right]=3 / 4$
- $\operatorname{Pr}[(1,2)]=\operatorname{Pr}[(2,1)]=\operatorname{Pr}[(2,2)]=1 / 4$
- Expected revenue $=3 / 4 \cdot 3=2.25>2$
- Selling separately is not optimal!

BUNDLING IS NOT OPTIMAL

- $D_{1}=D_{2}=U\{0,1,2\}$
- Selling separately gives revenue $4 / 3$
- Price of 0 gives 0
- Price of 1 gives $1 \cdot 2 / 3=2 / 3$
- Price of 2 gives $2 \cdot 1 / 3=2 / 3$
- Bundling gives same revenue
- Optimal price ends up being price of $\$ 2$
- It suffices to check that $0 \$, 1 \$, 3 \$$ are not better

BUNDLING IS NOT OPTIMAL

- $D_{1}=D_{2}=U\{0,1,2\}$
- Selling separately and Bundling give revenue 4/3
- Henceforth, SRev $=$ BRev $=4 / 3$
- How about this:
- You can pay $\$ 2$ and get one item (whichever you want)
- You can pay \$3 for both

v_{1} / v_{2}	0	1	2
0	$0 \$$	$0 \$$	$2 \$$
1	$0 \$$	$0 \$$	$3 \$$
2	$2 \$$	$3 \$$	$3 \$$

- Expected revenue $=13 / 9>4 / 3$

OPTIMALITY REQUIRES RANDOMIZATION

- $D_{1}=U\{1,2\}, D_{2}=U\{1,3\}$
- Every deterministic auction (i.e. allocation is either 0 or 1 for each item) sets a price for every subset of items
- One can check that in this instance the optimal deterministic auction makes revenue 2.5
- Randomized auction:
- Pay $\$ 4$ and get both items for sure
- Pay $\$ 2.5$ and: (1) get the first item, (2) flip a (fair) coin for the second item
- You'll pay $\$ 4$ every time $v_{2}=3$
- If $v_{1}=2$ and $v_{2}=1$ you'll buy the gamble
- Expected revenue $=2.65>2.5$
- Optimal auction can be randomized!

REVENUE NON MONOTONICITY

- $\operatorname{Rev}(X \times X)=0$ ptimal expected revenue from single additive buyer with two items whose values are distributed i.i.d. according to the random variable X
- Y stochastically dominates X
- $\forall x, \operatorname{Pr}[Y \geq x] \geq \operatorname{Pr}[X \geq x]$
- For example, $U[0,2]$ stoch. dominates $U[0,1]$
- Theorem: [Hart, Reny 2012]
- There exist X, Y such that Y stochastically dominates X, and

$$
\operatorname{Rev}(X \times X)>\operatorname{Rev}(Y \times Y)
$$

REVENUE NON MONOTONICITY

- Theorem: [Hart, Reny 2012]
- There exist X, Y such that Y stochastically dominates X, and

$$
\operatorname{Rev}(X \times X)>\operatorname{Rev}(Y \times Y)
$$

- Intuitively:
- You compute the optimal revenue for $D_{1}=D_{2}=$ $U[0,1]$. It's some number R.
- Then I tell you "oops, I messed up! $D_{1}=D_{2}=$ $U[1,2]$! Find the new optimal revenue $R^{\prime \prime \prime}$.
- It could be that $R^{\prime}<R$!
- That's not the case in this example, but still!

REVENUE NON MONOTONICITY

- Theorem: [Hart, Reny 2012]
- There exist X, Y such that Y stochastically dominates X, and

$$
\operatorname{Rev}(X \times X)>\operatorname{Rev}(Y \times Y)
$$

$X=\left\{\begin{array}{l}10 \text { with probability } 4 / 15 \\ 46 \text { with probability } 1 / 90 \\ 47 \text { with probability } 1 / 3 \\ 80 \text { with probability } 7 / 30 \\ 100 \text { with probability } 7 / 45\end{array}\right.$
$Y=\left\{\begin{array}{l}10 \text { with probability } \frac{2399}{4000} \\ 13 \text { with probability } 1 / 9000 \\ 46 \text { with probability } 1 / 90 \\ 47 \text { with probability } 1 / 3 \\ 80 \text { with probability } 7 / 30\end{array}\right.$

100 with probability $7 / 45$

SO FAR

- Revelation Principle
- Single parameter environments
- Second price auctions
- Myerson's lemma
- Myerson's optimal auction
- Cremer-McLean auction for correlated buyers
- Prophet inequalities
- Bulow-Klemperer
- Multiparameter environments
- The VCG mechanism
- Challenges
- Revenue optimal auctions are strange

