
ALGOSTRUTH JUSTICE
Mechanism	Design:	

Multi-Dimensional	Mechanism	
Design

Teachers:	Ariel	Procaccia and	Alex	Psomas (this	time)	



SO	FAR
• Revelation	Principle
• Single	parameter	environments

◦ Second	price	auctions
◦ Myerson’s	lemma
◦ Myerson’s	optimal	auction
◦ Cremer-McLean	auction	for	correlated	buyers
◦ Prophet	inequalities	
◦ Bulow-Klemperer



TODAY
• Multidimensional	environments

◦ The	VCG	mechanism
◦ Challenges
◦ Revenue	optimal	auctions	are	strange



COMBINATORIAL	AUCTIONS

• . buyers
• 5 items

◦ Result	holds	for	arbitrary	feasibility	sets
• Agent	A has	an	(arbitrary)	value	function	F

G

from	subsets	of	items	to	non-negative	reals

◦ Complementarities:	F
G
{1} = 1, F

G
{2} =

2, F
G
1,2 = 100

◦ Substitutes:	F
G
1 = 10, F

G
2 =

10, F
G
1,2 = 12

◦ Or	anything	else	really:	F
G
1 = 10, F

G
2 =

10, F
G
1,2 = 0



VCG

• Goal:	find	a	truthful	(DSIC)	and	feasible	
mechanism	that	maximizes	social	welfare	
>?@A>BCDEFGHID JK JL,…,JO ∑G QG(RG)



VCG

• Let’s	try	our	single	dimensional	approach
• Commit	to	the	allocation	rule	8 that	maximizes	
social	welfare,	and	then	find	appropriate	payments

• 8 > = @ABC@8D ∑F >F(HF)
◦ >F here	is	a	reported	valuation	function,	not	a	number

• Let	H∗ be	the	social	welfare	maximizing	allocation
• What	about	payments?
• Perhaps	try	to	prove	another	“Myerson’s	Lemma”?
• Not clear what monotonicity is...
• Not clear what the “critical bid” is	(bids	are	
functions)…



VICKREY-CLARKE-GROVES

• Key	idea:	“externality”
• Howmuch pain does	your	existence	cause?

• Aka,	how	much	does	your	presence	hurt	
everyone	else’s	value?

• That’s howmuch you should pay

• In	retrospect,	same	idea	as	second	price	
auction
◦ I pay exactly the	maximum	social welfare when	
I’m	not	there



VICKREY-CLARKE-GROVES

./ 0 = max
5
6
78/

07(:7) −6
78=

07(:7∗)

Without	F With	F

• ./ 0 ≥ 0
◦ Why?

• Claim:	VCG	is	DSIC



VICKREY-CLARKE-GROVES

Proof:

• Fix 6 and	;<=
• Let	@∗ be	the	social	welfare	maximizing	allocation	
when	6 submits	;=

L= = N= @=
∗ +P

QRS

;Q @Q
∗ − max

U
P
QR=

;Q @Q

(A) (B)

• Observation:		(B)	is	out	of	6’s	control
• Thought experiment: 6 can	directly	pick	any	@∗

◦ As	opposed	to	picking	;= (that	affects	@
∗)

• What	would	she	pick?
◦ Maximize	(A)

• What	is	our	mechanism	doing?



CHALLENGES

• Preference	elicitation
◦ Bidders	report	their	valuation	function
◦ For	= items	each	bidder	has	to	report	more	or	
less	2A numbers

• Ok, so no direct revelation mechanisms
◦ Keep everything	on	a	“need	to	know”	basis

• Canonical	approach	is	the	
English/ascending	auction

◦ Have an increasing	price	LM for	every	item.
◦ When there is a single bidder left give	it	to	them	
for	that	price



FUN	STORY
[CRAMTON,	SCHWARTZ	2000]

• Auction for spectrum rights	in	the	US
• Iterative auction where	companies	bid	for	
licenses	(items)	to	broadcast	over	specific	
bands	of	the	electromagnetic in	certain	
areas	

• Bids	are public
• FCC raised	~23	billion	USD	from	1994	to	
1998	via	16	such	auctions



FUN	STORY

• Mercury	PCS	and	High	Plains	Wireless	are	having	a	
bidding	war	for	license	#264	for	Lubbock,	Texas.

• In the meantime,	High	Plains	Wireless	is	currently	
the	highest	bidder	for	license	#013	for	Amarillo,	
Texas	(not	much	competition	for	this	license)

• Mercury	PCS	outbids	High	Plains	Wireless	in	#013	
in	round	68	(first	time Mercury	PCS	made	a	bid	for	
that	area)
◦ The last three digits of the bid: 264

• Next	bid	of	Mercury	PCS	on	#264	had	last	three
digits “013”

• In	other	words	“Stay	away	from	264,	otherwise	013	
will	cost	you	a	lot	more”



ANOTHER	FUN	STORY
[MCMILLAN.	SELLING	SPECTRUM	RIGHTS]

• What	a	rookie	mistake…
• Just	run	a	sealed-bid	auction…
• New Zealand 1990:	Television	broadcasting	licenses	
auctioned	off	via simultaneous	sealed-bid	Vickrey
auctions

• Government	projected	it	would	make	250	million
• Made 34
• Even	funnier:	

◦ A	company	bid	7	million	NZ$	for	a	license.	Ended	up	paying	
5000

◦ Another	license	had	highest	bid	100,000.	Second	highest:	6.
◦ A	university	student	bid	NZ$1	for	a	television	license	for	a	
small	city;	no	one	else	bid	anything	so	he	won	and	paid	
nothing



CHALLENGES

• Computational	tractability
◦ Even when valuation	functions	are	very	simple,	
maximizing	welfare	can	be	NP-hard

◦ Example:	Single	Minded	buyers.
• Bidder	H has	value IJ for	some	subset	KJ,	and	zero	for	
everything	else
– Maximizing	welfare	is	essentially	the	same	as	finding	the	
largest	Independent Set
» Vertices are bidders
» Edges	are	items
» KJ = edges	adjacent	to	vertex/bidder	H



CHALLENGES

• Computational	tractability
◦ What about approximations?

• Say	you	have	an	algorithm	that	can	find	in	
polynomial	time	an	A approximation	to	the	optimal	

(social	welfare	maximizing)	allocation

◦ In fact we do	have	such	algorithms	for	single	minded	
bidders	( G approximation)

• Almost-VCG	payments	are not incentive compatible
◦ We	need	to	be	able	to	maximize	social	welfare	in	order	
to	compute	the	externality	of	each	agent

◦ If	we	can	only	do	this	approximately,	the	payments	are	
not	the	VCG	payments,	and	truthfulness	cannot	be	

guaranteed



CHALLENGES

• Horrendous	for	revenue
◦ As opposed to second price which was pretty
good (by Bulow-Klemperer)

• 2 bidders,	F and	G,	and	2	items
• F wants	both	or	nothing

◦ HI 1,2 = 1,	HI L = 0 for	all	L ≠ {1,2}
• B only wants	item	1

◦ HQ 1,2 = HQ 1 = 1, HQ = 0 otherwise



POLL

• 2	bidders,	- and	0,	and	2	items
• - wants	both	or	nothing

◦ 78 1,2 = 1,	78 ; = 0 for	all	; ≠ {1,2}

• B only wants	item	1
◦ 7D 1,2 = 7D 1 = 1, 7D = 0 otherwise

What’s	the	allocation?	What’s	the	
payment?

1. A	gets	both,	pays	1 3. B	gets	{1},	pays	1

2. A	gets	both,	pays	0 4. B	gets	both,	pays	1

Question

???



VCG IS	HORRIBLE	FOR	REVENUE

• Suppose	a	third	bidder	< shows	up
◦ >? 1,2 = >? 2 = 1, and	zero	otherwise

• What will VCG do?
• Social	welfare	maximizing	solution	is	to	give	
item	1	to	O and	item	2	to	<

• What	are	the	payments?
• Zero!



THE	PLOT	THICKENS:	REVENUE

• For	now	one	buyer
• : items
• Focus	on	additive	buyers

◦ C D = ∑G∈I CG
◦ Can we	efficiently	compute VCG in this setting?

• Again,	Bayesian	approach
◦ TG = distribution	for	item	U



COMPUTATIONAL	PROBLEM

• Can	we	at	least	compute the	optimal	
auction?

• Yes!	Linear	program!
• B(D) = variable	for	the	allocation	of	the	
agent	when	she	reports	D

• J D = variable	for	the	payment	of	the	agent	
when	she	reports	D



COMPUTATIONAL	PROBLEM

• Objective:

max:
;

< = ⋅ Pr[=ABCD = =]

• Constraints:
◦ IC:	∀=, =L: =M = − < = ≥ =M =L − < =L

◦ IR:	∀=: =M = − < = ≥ 0
◦ Feasibility: ∀=: 1 ≥ M = ≥ 0

• Great!
• What does the	optimal	auction	look	like?
• That’s	a	good	question…



SELLING	SEPARATELY	IS	NOT	
OPTIMAL

• 2	items
◦ 56 = value	for	item	?

• Additive	buyer
◦ Value for both items is 5E + 5G

• HE = HG = I{1,2}

• Idea #1: Run optimal auction for each item
◦ Posting	a	price	for	item	? of	1 makes	1
◦ Posting	a	price	for	item	? of	2 makes	2 ⋅ ⁄1 2 = 1

• Total (expected) revenue	= 2



SELLING	SEPARATELY	IS	NOT	

OPTIMAL

• Selling	separately	makes	2
• Idea	#2:	Bundle	the	items!

◦ What if we	post	a	price	of	3$	for	both	items	(as	
a	bundle)?

◦ You pay $3 and get both, or you get nothing.
• Pr QR + QT ≥ 3 = 3/4

◦ Pr 1,2 = Pr 2,1 = Pr 2,2 = 1/4

• Expected	revenue = ⁄3 4 ⋅ 3 = 2.25 > 2

• Selling	separately	is	not	optimal!



BUNDLING	IS	NOT	OPTIMAL

• /0 = /2 = 3{0,1,2}

• Selling separately	gives	revenue	 ⁄4 3
◦ Price	of	0 gives	0
◦ Price of 1 gives	1 ⋅ ⁄2 3 = ⁄2 3

◦ Price	of	2	gives	2 ⋅ ⁄1 3 = ⁄2 3

• Bundling gives	same	revenue
◦ Optimal	price	ends	up	being	price	of	$2
◦ It suffices to check	that	0$,	1$,	3$	are	not	better



BUNDLING	IS	NOT	OPTIMAL
• /0 = /2 = 3{0,1,2}
• Selling separately	and	Bundling	give	revenue	 ⁄4 3

◦ Henceforth,	SRev =	BRev =	4/3
• How about this:

◦ You	can	pay	$2	and	get	one	item	(whichever	you	want)
◦ You can pay $3 for both

Z0/Z2 0 1 2
0 0$ 0$ 2$
1 0$ 0$ 3$
2 2$ 3$ 3$

• Expected revenue	=	13/9	>	4/3



OPTIMALITY	REQUIRES	
RANDOMIZATION

• 23 = 5 1,2 , 29 = 5{1,3}
• Every deterministic auction (i.e.	allocation	is	either	
0	or	1	for	each	item)	sets	a	price	for	every	subset	of	
items
◦ One can check that	in	this	instance	the	optimal	
deterministic	auction	makes	revenue	2.5

• Randomized	auction:
◦ Pay $4 and get both items for sure
◦ Pay	$2.5	and:	(1)	get	the	first	item,	(2)	flip	a	(fair)	coin	
for	the second item

• You’ll	pay	$4	every	time	\9 = 3
• If	\3 = 2 and	\9 = 1 you’ll	buy	the	gamble
• Expected	revenue	=	2.65	>	2.5
• Optimal	auction	can	be	randomized!



REVENUE	NON	MONOTONICITY

• -./ 0× 0 = Optimal	expected	revenue	
from	single	additive	buyer	with	two	items	
whose	values	are	distributed	i.i.d.	according	
to	the	random	variable	0

• J stochastically	dominates	0
◦ ∀L, Pr J ≥ L ≥ Pr[0 ≥ L]
◦ For	example,	S[0,2] stoch.	dominates	S[0,1]

• Theorem:	[Hart,	Reny 2012]
◦ There	exist	0, J such	that	J stochastically	
dominates	0,	and	

-./ 0×0 > -./(J×J)



REVENUE	NON	MONOTONICITY

• Theorem:	[Hart,	Reny 2012]
◦ There	exist	A, B such	that	B stochastically	
dominates	A,	and	

GHI A×A > GHI B×B

• Intuitively:	
◦ You	compute	the	optimal	revenue	for	OP = OR =
S[0,1].	It’s	some	number	G.

◦ Then I tell	you	“oops,	I	messed up! OP = OR =
S 1,2 ! Find	the	new	optimal	revenue	G′”.

◦ It	could	be	that	G] < G!
• That’s	not	the	case	in	this	example,	but	still!



REVENUE	NON	MONOTONICITY

• Theorem:	[Hart,	Reny 2012]
◦ There	exist	A, B such	that	B stochastically	
dominates	A,	and	

GHI A×A > GHI B×B

10	with	probability	4/15

46	with	probability	1/90

47	with	probability	1/3

80	with	probability	7/30

100	with	probability	7/45

10	with	probability	
WXYY

Z[[[

46	with	probability	1/90

47	with	probability	1/3

80	with	probability	7/30

100	with	probability	7/45

13	with	probability	1/9000

A = B =
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