TRUTH JUSTICE ALGOS

Mechanism Design:
Multi-Dimensional Mechanism
Design

Teachers: Ariel Procaccia and Alex Psomas (this time)



SO FAR

* Revelation Principle

* Single parameter environments
o Second price auctions
o Myerson’s lemma
o Myerson’s optimal auction
o Cremer-McLean auction for correlated buyers

(0]

Prophet inequalities

(0]

Bulow-Klemperer



TODAY

* Multidimensional environments
o The VCG mechanism
o Challenges
o Revenue optimal auctions are strange



COMBINATORIAL AUCTIONS

* n buyers

* m items
o Result holds for arbitrary feasibility sets
* Agenti has an (arbitrary) value function v;
from subsets of items to non-negative reals
o Complementarities: v;({1}) = 1, v;({2}) =
2,v;({1,2}) = 100
o Substitutes: v;({1}) = 10,v;({2}) =
10,v;({1,2}) = 12
o Or anything else really: v;({1}) = 10, v;({2}) =
10,v;({1,2}) = 0



VCG

* Goal: find a truthful (DSIC) and feasible
mechanism that maximizes social welfare

argmaxfeasible S=(51,--+Sn) Zi Ui (Si)



VCG

Let’s try our single dimensional approach

Commit to the allocation rule x that maximizes
social welfare, and then find appropriate payments

x(B) = argmaxs ),; b; (S;)

o b; here is a reported valuation function, not a number
Let S* be the social welfare maximizing allocation
What about payments?

Perhaps try to prove another “Myerson’s Lemma”?
Not clear what monotonicity is...

Not clear what the “critical bid” is (bids are
functions)...



VICKREY-CLARKE-GROVES

Key idea: “externality”
How much pain does your existence cause?

Aka, how much does your presence hurt
everyone else’s value?

That’s how much you should pay

In retrospect, same idea as second price
auction

o | pay exactly the maximum social welfare when
['m not there



VICKREY-CLARKE-GROVES

pi(B) = maxz bi(S)) — z bi(S))
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o Why?
e Claim: VCG is DSIC



VICKREY-CLARKE-GROVES

Proof:

Fix i and b—i

Let S* be the social welfare maximizing allocation
when i submits b;

—vl(S)+Zb(S) —mabe(S)
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(A) (B)
Observation: (B) is out of i’s control

Thought experiment: i can directly pick any S*
o As opposed to picking b; (that affects S™)

What would she pick?
o Maximize (A)

What is our mechanism doing?




CHALLENGES

* Preference elicitation
o Bidders report their valuation function

o For m items each bidder has to report more or
less 2™ numbers

* Ok, so no direct revelation mechanisms
o Keep everything on a “need to know” basis
* Canonical approach is the
English /ascending auction
o Have an increasing price p; for every item.

o When there is a single bidder left give it to them
for that price



FUN STORY

|[CRAMTON, SCHWARTZ 2000]

Auction for spectrum rights in the US

[terative auction where companies bid for
licenses (items) to broadcast over specific
bands of the electromagnetic in certain
areas

Bids are public

FCC raised ~23 billion USD from 1994 to
1998 via 16 such auctions



FUN STORY

Mercury PCS and High Plains Wireless are having a
bidding war for license #264 for Lubbock, Texas.

In the meantime, High Plains Wireless is currently
the highest bidder for license #013 for Amarillo,
Texas (not much competition for this license)

Mercury PCS outbids High Plains Wireless in #013
in round 68 (first time Mercury PCS made a bid for

that area)

o The last three digits of the bid: 264
Next bid of Mercury PCS on #264 had last three
digits “013”
In other words “Stay away from 264, otherwise 013
will cost you a lot more”



ANOTHER FUN STORY

[MCMILLAN. SELLING SPECTRUM RIGHTS]

What a rookie mistake...
Just run a sealed-bid auction...

New Zealand 1990: Television broadcasting licenses
auctioned off via simultaneous sealed-bid Vickrey
auctions

Government projected it would make 250 million
Made 34

Even funnier:

o A company bid 7 million NZ$ for a license. Ended up paying
5000

o Another license had highest bid 100,000. Second highest: 6.

o A university student bid NZ$1 for a television license for a
small city; no one else bid anything so he won and paid
nothing



CHALLENGES

 Computational tractability

o Even when valuation functions are very simple,
maximizing welfare can be NP-hard

o Example: Single Minded buyers.

* Bidder i has value v; for some subset §;, and zero for
everything else

— Maximizing welfare is essentially the same as finding the
largest Independent Set

» Vertices are bidders
» Edges are items
» §; = edges adjacent to vertex/bidder i



CHALLENGES

 Computational tractability
o What about approximations?

e Say you have an algorithm that can find in
polynomial time an a approximation to the optimal
(social welfare maximizing) allocation

o In fact we do have such algorithms for single minded
bidders (1/m approximation)

* Almost-VCG payments are not incentive compatible

o We need to be able to maximize social welfare in order
to compute the externality of each agent

o [f we can only do this approximately, the payments are
not the VCG payments, and truthfulness cannot be
guaranteed



CHALLENGES

Horrendous for revenue

o As opposed to second price which was pretty
good (by Bulow-Klemperer)

2 bidders, A and B, and 2 items

A wants both or nothing

- v,({1,2}) = 1,v,(5) = 0forall S # {1,2}
B only wants item 1

o vg({1,2}) = vg({1}) = 1, vz = 0 otherwise



POLL

e 2 bidders, A and B, and 2 items

* A wants both or nothing
o v,({1,2}) = 1,v,(5) = 0forall S # {1,2}
* B only wants item 1
o vp({1,2}) = vg({1}) = 1, vz = 0 otherwise

Question
What's the allocation? What’s the

payment? q ? 9
1. Agets both,pays1 3. Bgets {1}, pays 1 e? ®

2. A gets both, pays 0 4. B gets both, pays 1




VCG IS HORRIBLE FOR REVENUE

Suppose a third bidder C shows up
o v-({1,2}) = v.({2}) = 1, and zero otherwise

What will VCG do?

Social welfare maximizing solution is to give
item 1to B and item 2 to C

What are the payments?
Zero!



THE PLOT THICKENS: REVENUE

For now one buyer
m items
Focus on additive buyers

° U(S) = XjesV

Again, Bayesian approach

° D; = distribution for item j



COMPUTATIONAL PROBLEM

Can we at least compute the optimal
auction?

Yes! Linear program!

x(v) = variable for the allocation of the
agent when she reports v

p(v) = variable for the payment of the agent
when she reports v



COMPUTATIONAL PROBLEM

Objective:
maxz p(v) - Prvalue = v]
v

Constraints:

o IC: Vv, vivx(v) —p(v) = vx(v') —p(v')

o IRivVv:vx(v) —p(v) =0

o Feasibility: Vv:1 = x(v) = 0

Great!

What does the optimal auction look like?

That’s a good question...




SELLING SEPARATELY IS NOT
OPTIMAL

2 items
o p; = value for item i
Additive buyer
o Value for both items is v; + v,
D, =D, =U{1,2}
[dea #1: Run optimal auction for each item

o Posting a price for item i of 1 makes 1

o Posting a price foritemi of 2 makes2-1/2 =1
Total (expected) revenue = 2



SELLING SEPARATELY IS NOT
OPTIMAL

Selling separately makes 2

Idea #2: Bundle the items!

o What if we post a price of 3% for both items (as
a bundle)?

> You pay $3 and get both, or you get nothing.
Prlv, + v, =2 3] =3/4

> Pr[(1,2)] = Pr[(2,1)] = Pr[(2,2)] = 1/4
Expected revenue =3/4 -3 = 2.25 > 2
Selling separately is not optimal!




BUNDLING IS NOT OPTIMAL

- D, =D, =U{0,1,2}

* Selling separately gives revenue 4/3
o Price of 0 gives 0
o Priceof 1 gives1:-2/3 =2/3

o Priceof 2 gives2-1/3 =2/3

* Bundling gives same revenue

o Optimal price ends up being price of $2
o [t suffices to check that 0%, 1$, 3% are not better



BUNDLING IS NOT OPTIMAL

D, =D, = U{0,1,2}

Selling separately and Bundling give revenue 4/3
o Henceforth, SRev = BRev =4/3

How about this:

> You can pay $2 and get one item (whichever you want)
> You can pay $3 for both

v1/0; 0 1 2
0 0% 0% 2%
1 0% 0% 3%
2 2% 3% 3%

Expected revenue =]

3/9 > 4/3




OPTIMALITY REQUIRES
RANDOMIZATION

D, = U{1,2}, D, = U{1,3)

Every deterministic auction (i.e. allocation is either
0 or 1 for each item) sets a price for every subset of
items

o One can check that in this instance the optimal
deterministic auction makes revenue 2.5

Randomized auction:
o Pay $4 and get both items for sure

o Pay $2.5 and: (1) get the first item, (2) flip a (fair) coin
for the second item

You'll pay $4 every time v, = 3

If vy = 2 and v, = 1 you'll buy the gamble
Expected revenue = 2.65 > 2.5

Optimal auction can be randomized!



REVENUE NON MONOTONICITY

* Rev(X X X ) = Optimal expected revenue
from single additive buyer with two items
whose values are distributed i.i.d. according
to the random variable X

* Y stochastically dominates X

o Vx,PrlY = x] = Pr[X = x]

o For example, U[0,2] stoch. dominates U[0,1]
* Theorem: [Hart, Reny 2012]

o There exist X, Y such that Y stochastically
dominates X, and

Rev(XXxX) > Rev(Y XY)



REVENUE NON MONOTONICITY

* Theorem: [Hart, Reny 2012]

o There exist X, Y such that Y stochastically
dominates X, and

Rev(XxX) > Rev(YXY)
* Intuitively:
> You compute the optimal revenue for D; = D, =
U]0,1]. It's some number R.
o Then I tell you “oops, | messed up! D; = D, =
U[1,2]! Find the new optimal revenue R"".

o It could be that R’ < R!
* That’s not the case in this example, but still!




REVENUE NON MONOTONICITY

* Theorem: [Hart, Reny 2012]

o There exist X, Y such that Y stochastically

dominates X, and
Rev(XxX) > Rev(YXY)

B 10 with probability %

10 with probability 4/15
13 with probability 1/9000

46 with probability 1/90
46 with probability 1/90

I
\

X = — 47 with probability 1/3 Y
47 with probability 1/3

80 with probability 7/30
80 with probability 7/30

100 with probability 7 /45
— 100 with probability 7/45
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