TRUTH JUSTICE ALGOS

Mechanism Design III:
Simple single item auctions

Teachers: Ariel Procaccia and Alex Psomas (this time)



SO FAR

* Revelation Principle

* Single parameter environments
o Second price auctions
o Myerson’s lemma
o Myerson’s optimal auction



CORRECTION IN THE DEFINITION OF

MHR
. _ 1-F(v)
P =v = 76,
e D is MHR if 1;1(1(;) is monotone non

Increasing.



TODAY

* Cremer-McLean for correlated buyers
* Prophet Inequalities
* Bulow-Klemperer



BEYOND INDEPENDENCE

* Myerson: Optimal auction for independent
bidders.
 What if the bidders’ values are correlated?
o Very realistic!

 We'll see a 2 agent instance of a result of
Cremer and McLean [1998]

o They show how to extract the full social welfare
under very mild conditions on the correlation



CREMER-MCLEAN

v1/V; 1 2 3
1 1/6 1/12 1/12
2 1/12 1/6 1/12
3 1/12 1/12 1/6
Poll 1

How much revenue does a second

price auction make (in expectation)?

1. 8/6
2.10/6

3.12/6
4. 14/6

/P




CREMER-MCLEAN

v1/v2 1 2 3

1 1/6 1/12 1/12

2 1/12 1/6 1/12

3 1/12 1/12 1/6

Poll 2

What'’s the maximum possible
revenue an auction can make?
1. 8/6 3.12/6
2.10/6 4. 14/6 o




vl/vz 1 2 3
1 1/6 1/12 1/12
2 1/12 1/6 1/12
3 1/12 1/12 1/6
* Pj=Prlv, =j|v; =1]
1/2 1/4 1/4
P = 1/4 1/2 1/4
1/4 1/4 1/2
« FElutilityof vy =1 fromSP] =0
o FElutilityof vy =2FromSP|=1/4-1=1/4
o FElutilityof vy =3 fromSP|=1/4-2+1/4-1=3/4

CREMER-MCLEAN




CREMER-MCLEAN

e Observation: P has full rank

¢ TherefOI‘e, P ‘ (xl,xz, X3)T — (O; 1/4-) 3/4-)T
has a solution:
o xq =—1,x, =0,x3 =2

The magic part

* Consider the following bet B, for player 1:
o [payyoulifv, =1
o Nothing happens if v, = 2
o You pay me 2 if v, = 3



CREMER-MCLEAN

Consider the following bet B, for player 1: (a) I pay you
1ifv, =1, (b) Nothing happens if v, = 2, (c) You pay
me 2 lf vz = 3

What's the expected value for taking this betif v; = 17
c 1/2-1+ 1/4-0+1/4-(=2) =0

What ifv; =27 —-1/4

Whatif v, = 3?7 —3/4

Similar bet B, for player 2

Auction: Player i is offered bet B;. After the bet we’ll run
a second price auction

o Elutility of v, = 1] = E[utility of B;] +
E[utility from SP] =0

ut.of v, =2]=-1/4+ 1/4=0
lut.of vy, =3]=-3/4+ 3/4=0

e}

E
E

e}



CREMER-MCLEAN

Since buyers always have zero utility, and
the item is always sold, the seller must be
extracting all of the social welfare

Expected revenue = 14/6
Wth just happened???
That’s a pretty weird auction!

This “prediction” is very unlikely to be
observed in practice.




MYERSON IS WEIRD

n = 2.D, = U[0,1],D, = U[0,100]

¢1(v1) = 2v; — 1, ¢, (v2) = 2v, — 100
Optimal auction

o When v; <1/2 and v, = 50: Sell to 2 for 50
o Whenv; > 1/2 and v, < 50: Sell to 1 for %

o When 0 < 2v; — 1 < 2v, — 100: Sell to 2 for
(99+2v,)/2 (sllghtly over 50)

o When 0 < 2v, — 100 < 2v; — 1: Sell to 1 for (2v, —
99)/2 (slightly over ¥2)

Wth is this???

Impossible to explain, unless you go through all
of Myerson’s calculations!




OPTIMAL AUCTIONS ARE WEIRD

Weirdness inevitable if you want optimality

Weirdness inevitable if you're 100%
confident in the model

Take away: Optimality requires complexity

In the remainder: ask for simplicity and
settle for approximately optimal auctions.



CRITIQUE #1: TOO COMPLEX

A (cool) detour: Prophet inequalities!



PROPHET INEQUALITY

n treasure boxes.

Treasure in box i is distributed according to
known distribution D;

In stage i you open box i and see the treasure
(realization of the random variable) x;

After seeing x; you either take it, or discard it
forever and move on to stage i + 1

What should you do?

Our goal will be to compete against a prophet
who knows the realizations of the D;s



PROPHET INEQUALITY

D, = U[0,60] D; = Exp[1/60] D, = N[1,1] D, = U[0,100]

Our value is 52, Prophet gets 61



PROPHET INEQUALITY

* Optimal policy: Solve it backwards!
o [f we get to the last box, we should clearly take x,,

o For the second to last, we should take x,,_ if it's larger
than E|[x,]

o We should take x,,_, only if it’s larger than the expected
value of the optimal policy starting atn — 1, i.e.

Pr[xn—l > E[xn]] Exn_1lxn_1 > Elxp]] + Pr[xn—l <
E[xn]] | E[xn]
o And so on...
* Ok, that’s pretty complicated...
* Any simpler policies?

o Focus on policies that set a single threshold t and accept
x; if it's above t, otherwise reject

o How good are those?



PROPHET INEQUALITY

 Theorem: There exists a single threshold t~
such that the policy that accepts x; when
x; = t” gives expected reward at least

%E Imax x; |, i.e. at least half of what the
l

prophet makes (in expectation).



PROPHET INEQUALITY

Proof

« 77 = max{z, 0}

* Given a “threshold policy” with threshold ¢,
let g(t) = Pr[policy accepts no prize]

* Large t: large g(t), but big rewards

* Small t: small g(t), but small rewards

 EFlreward] = q(t) -0+ (1 — q(t)) -t

A little too pessimistic...

* When x; = t we’ll count x;, nott



PROPHET INEQUALITY

Elreward] = t(l — q(t)) +
zE[Xi — t|xi > t&Xj <tVj+ l] . Pr[xl- > t&Xj <tVj+ l]

_ t(1—q() +
zE[xi —tlx; = t] - Prlx; = t] - Pr[xj <tVj# i]

i

=t(1—q@®))+ z E[(x; — )] Prlx; < t,Vj # i

> t(1—q(t)) +q(t) 2 E[(x; — ©)7]

(we used that q(t) = Pr[x; < t,Vj]| < Pr[x; < t,Vj #1i])



PROPHET INEQUALITY

Elreward] > t(1 — q(£)) + q(t) Z E[(x; — £)*]

Elmaxx;| = E[t + max(x; — t)]
| =t+ E[rlnax(xi —t)]
<t+ E[m,alx(xl- —t)7]

< t+ S E[(x — )]

t:q(t") =1/,

t* 1 1
E[reward] > > *5 E E[Cq;—t)"] = EE[maxxl-]
l
i



BACK TO AUCTIONS

Rev = E[L; ¢i(vi)x;(v;)] = E[max ¢ (v)"]

 Pick t* such that Pr[max ¢;(v;)* = t*] = 1/2
l

* Give item to bidder i if ¢;(v;) = t*

* Prophet inequality gives

E[reward] = z b;(v)x;(v;) == E [maxgb (v;)™]

* More Concretely.

= 7' (t")
o Remove all bidders with b; < 1;
o Run a second price with the remaining bidders



CRITIQUE #2: TOO MUCH
DEPENDENCE ON THE DISTRIBUTION

* Optimal auction depends on the distribution

 Wasn’t the whole point of the Bayesian
approach that this is unavoidable?

 We'll assume that v; ~ D; (in the analysis),
but our auctions will not depend on the D;s

> “Prior independent” mechanism design



PRIOR INDEPENDENT MECHANISMS

Sounds pretty optimistic...

Existence of a good prior independent
auction A for (say) regular distributions
implies that a single auction can compete
with all the (uncountably many) optimal
auctions, tailoredto each distribution,
simultaneously!

Pretty wild!

Any candidates?
o Second price auction!



BULOW-KLEMPERER THEOREM

OPT (n, D)= Expected revenue of optimal
auction with n i.i.d. buyers from D.

V(n,D) = Expected revenue of Vickrey with n
i.i.d. buyers from D.

Theorem (1996): For all regular D we have
Vin+1,D) = OPT(n,D)

In more modern language: “The competition
complexity of single-item auctions with regular
distributions is 1”
o The competition complexity of n bidders with
additive valuations over m independent, regular

items is at least logm and at mostn + 2m — 2
|[EFFTW 17]



BULOW-KLEMPERER THEOREM

* Theorem (1996): For all regular D we have
Vin+1,D) = OPT(n,D)

* Intuitively: It is better to increase
competition by a single buyer than invest in
learning the underlying distribution!



BULOW-KLEMPERER THEOREM

Proof:

* Let A be the following auction forn + 1
buyers from D:
o Run OPT(n,D) on buyers 1, ...,n

o If the item is not sold, give it for free to buyer
n+1

* Obvious observation 1: Rev(A) = OPT(n,D)

* Obvious observation 2: A always allocates
the item.



BULOW-KLEMPERER THEOREM

e Non obvious:

* The second price auction is the revenue
maximizing auction over all auctions that
always allocate the item.

o Why?

e Therefore
Vin+1,D) = Rev(A) = OPT(n,D)



SO FAR

* Revelation Principle

* Single parameter environments
o Second price auctions
o Myerson’s lemma
o Myerson’s optimal auction
o Cremer-McLean auction for correlated buyers

(0]

Prophet inequalities

(0]

Bulow-Klemperer



