

Mechanism Design III: Simple single item auctions

Teachers: Ariel Procaccia and Alex Psomas (this time)

SO FAR

- Revelation Principle
- Single parameter environments
 - Second price auctions
 - Myerson's lemma
 - Myerson's optimal auction

CORRECTION IN THE DEFINITION OF MHR

•
$$\phi(v) = v - \frac{1-F(v)}{f(v)}$$

• *D* is MHR if $\frac{1-F(v)}{f(v)}$ is monotone non increasing.

TODAY

- Cremer-McLean for correlated buyers
- Prophet Inequalities
- Bulow-Klemperer

BEYOND INDEPENDENCE

- Myerson: Optimal auction for independent bidders.
- What if the bidders' values are correlated?
 Very realistic!
- We'll see a 2 agent instance of a result of Cremer and McLean [1998]
 - They show how to extract the full social welfare under very mild conditions on the correlation

v_1/v_2	1	2	3
1	1/6	1/12	1/12
2	1/12	1/6	1/12
3	1/12	1/12	1/6

Poll 1

How much revenue does a secondprice auction make (in expectation)?1. 8/63. 12/62. 10/64. 14/6

v_1/v_2	1	2	3
1	1/6	1/12	1/12
2	1/12	1/6	1/12
3	1/12	1/12	1/6

Poll 2

What's the maximum possible revenue an auction can make?
1. 8/6
2. 10/6
3. 12/6
4. 14/6

v_1/v_2	1	2	3
1	1/6	1/12	1/12
2	1/12	1/6	1/12
3	1/12	1/12	1/6

•
$$P_{i,j} = \Pr[v_2 = j \mid v_1 = i]$$

	1/2	1/4	1/4
P =	1/4	1/2	1/4
	1/4	1/4	1/2

• $E[utility of v_1 = 1 from SP] = 0$

- $E[utility of v_1 = 2 From SP] = 1/4 \cdot 1 = 1/4$
- $E[utility \ of \ v_1 = 3 \ from \ SP] = 1/4 \cdot 2 + 1/4 \cdot 1 = 3/4$

- Observation: *P* has full rank
- Therefore, $P \cdot (x_1, x_2, x_3)^T = (0, \frac{1}{4}, \frac{3}{4})^T$ has a solution:

•
$$x_1 = -1, x_2 = 0, x_3 = 2$$

The magic part

- Consider the following bet *B*₁ for player 1:
 - I pay you 1 if $v_2 = 1$
 - Nothing happens if $v_2 = 2$

• You pay me 2 if
$$v_2 = 3$$

- Consider the following bet B_1 for player 1: (a) I pay you 1 if $v_2 = 1$, (b) Nothing happens if $v_2 = 2$, (c) You pay me 2 if $v_2 = 3$
- What's the expected value for taking this bet if $v_1 = 1$? • $1/2 \cdot 1 + 1/4 \cdot 0 + 1/4 \cdot (-2) = 0$
- What if $v_1 = 2? 1/4$
- What if $v_1 = 3? 3/4$
- Similar bet B_2 for player 2
- Auction: Player i is offered bet B_i . After the bet we'll run a second price auction
 - $E[utility of v_1 = 1] = E[utility of B_1] + E[utility from SP] = 0$
 - $E[ut. of v_1 = 2] = -1/4 + 1/4 = 0$
 - $E[ut. of v_1 = 3] = -3/4 + 3/4 = 0$

- Since buyers always have zero utility, and the item is always sold, the seller must be extracting all of the social welfare
- Expected revenue = 14/6
- Wth just happened???
- That's a pretty weird auction!
- This "prediction" is very unlikely to be observed in practice.

MYERSON IS WEIRD

- $n = 2.D_1 = U[0,1], D_2 = U[0,100]$
- $\phi_1(v_1) = 2v_1 1, \phi_2(v_2) = 2v_2 100$
- Optimal auction
 - When $v_1 \leq 1/2$ and $v_2 \geq 50$: Sell to 2 for 50
 - When $v_1 > 1/2$ and $v_2 < 50$: Sell to 1 for $\frac{1}{2}$
 - When $0 < 2v_1 1 < 2v_2 100$: Sell to 2 for $(99+2v_1)/2$ (slightly over 50)
 - When $0 < 2v_2 100 < 2v_1 1$: Sell to 1 for $(2v_2 99)/2$ (slightly over $\frac{1}{2}$)
- Wth is this???
- Impossible to explain, unless you go through all of Myerson's calculations!

OPTIMAL AUCTIONS ARE WEIRD

- Weirdness inevitable if you want optimality
- Weirdness inevitable if you're 100% confident in the model
- Take away: Optimality requires complexity
- In the remainder: ask for simplicity and settle for approximately optimal auctions.

CRITIQUE #1: TOO COMPLEX

A (cool) detour: Prophet inequalities!

- *n* treasure boxes.
- Treasure in box i is distributed according to known distribution D_i
- In stage *i* you open box *i* and see the treasure (realization of the random variable) *x*_{*i*}
- After seeing x_i you either take it, or discard it forever and move on to stage i + 1
- What should you do?
- Our goal will be to compete against a prophet who knows the realizations of the *D_i*s

 $D_1 = U[0,60] \quad D_1 = Exp[1/60] \quad D_1 = N[1,1] \quad D_1 = U[0,100]$

Our value is 52, Prophet gets 61

- Optimal policy: Solve it backwards!
 - If we get to the last box, we should clearly take x_n
 - For the second to last, we should take x_{n-1} if it's larger than $E[x_n]$
 - We should take x_{n-2} only if it's larger than the expected value of the optimal policy starting at n 1, i.e. $\Pr[x_{n-1} > E[x_n]] \cdot E[x_{n-1}|x_{n-1} > E[x_n]] + \Pr[x_{n-1} \le E[x_n]] \cdot E[x_n]$
 - And so on...
- Ok, that's pretty complicated...
- Any simpler policies?
 - Focus on policies that set a single threshold t and accept x_i if it's above t, otherwise reject
 - How good are those?

• **Theorem**: There exists a single threshold t^* such that the policy that accepts x_i when $x_i \ge t^*$ gives expected reward at least $\frac{1}{2}E[\max_i x_i]$, i.e. at least half of what the prophet makes (in expectation).

Proof

- $Z^+ = \max\{z, 0\}$
- Given a "threshold policy" with threshold t, let q(t) = Pr[policy accepts no prize]
- Large t: large q(t), but big rewards
- Small *t*: small q(t), but small rewards
- $E[reward] \ge q(t) \cdot 0 + (1 q(t)) \cdot t$
- A little too pessimistic...
- When $x_i \ge t$ we'll count x_i , not t

E[reward] = t(1 - q(t)) + $\sum_{i} E[x_i - t | x_i \ge t \& x_j < t, \forall j \neq i] \cdot \Pr[x_i \ge t \& x_j < t, \forall j \neq i]$ $= t \big(1 - q(t) \big) +$ $\sum_{i} E[x_i - t | x_i \ge t] \cdot \Pr[x_i \ge t] \cdot \Pr[x_j < t, \forall j \neq i]$ $= t \left(1 - q(t) \right) + \sum_{i} E[(x_i - t)^+] \cdot \Pr[x_j < t, \forall j \neq i]$ $\geq t(1-q(t)) + q(t) \sum_{i} E[(x_i - t)^+]$ (we used that $q(t) = \Pr[x_j < t, \forall j] \leq \Pr[x_j < t, \forall j \neq i]$)

$$E[reward] \ge t(1-q(t)) + q(t)\sum_{i} E[(x_i - t)^+]$$

$$E[\max_{i} x_{i}] = E[t + \max_{i} (x_{i} - t)]$$

$$= t + E[\max_{i} (x_{i} - t)]$$

$$\leq t + E[\max_{i} (x_{i} - t)^{+}]$$

$$\leq t + \sum_{i} E[(x_{i} - t)^{+}]$$

$$t^*: q(t^*) = \frac{1}{2}$$

$$E[reward] \ge \frac{t^*}{2} + \frac{1}{2} \sum_i E[(x_i - t^*)^+] \ge \frac{1}{2} E[\max_i x_i]$$

BACK TO AUCTIONS

- $Rev = E[\sum_i \phi_i(v_i)x_i(v_i)] = E[\max_i \phi_i(v_i)^+]$
- Pick t^* such that $\Pr[\max_i \phi_i(v_i)^+ \ge t^*] = 1/2$
- Give item to bidder *i* if $\phi_i(v_i) \ge t^*$
- Prophet inequality gives

 $E[reward] = E\left[\sum_{i} \phi_i(v_i) x_i(v_i) \ge \frac{1}{2} E\left[\max_{i} \phi_i(v_i)^+\right]\right]$

- More concretely:
 - $\circ r_i = \phi_i^{-1}(t^*)$
 - Remove all bidders with $b_i < r_i$
 - Run a second price with the remaining bidders

CRITIQUE #2: TOO MUCH DEPENDENCE ON THE DISTRIBUTION

- Optimal auction depends on the distribution
- Wasn't the whole point of the Bayesian approach that this is unavoidable?
- We'll assume that v_i ~ D_i (in the analysis), but our auctions will **not** depend on the D_is
 - "Prior independent" mechanism design

PRIOR INDEPENDENT MECHANISMS

- Sounds pretty optimistic...
- Existence of a good prior independent auction A for (say) regular distributions implies that a single auction can compete with all the (uncountably many) optimal auctions, *tailored* to each distribution, simultaneously!
- Pretty wild!
- Any candidates?
 - Second price auction!

- *OPT*(*n*, *D*) = Expected revenue of optimal auction with *n* i.i.d. buyers from *D*.
- V(n, D) = Expected revenue of Vickrey with n i.i.d. buyers from D.
- Theorem (1996): For all regular *D* we have $V(n + 1, D) \ge OPT(n, D)$
- In more modern language: "The competition complexity of single-item auctions with regular distributions is 1"
 - The competition complexity of n bidders with additive valuations over m independent, regular items is at least *logm* and at most n + 2m - 2 [EFFTW 17]

- Theorem (1996): For all regular D we have $V(n + 1, D) \ge OPT(n, D)$
- Intuitively: It is better to increase competition by a single buyer than invest in learning the underlying distribution!

Proof:

- Let A be the following auction for n + 1 buyers from D:
 - Run OPT(n, D) on buyers 1, ..., n
 - If the item is not sold, give it for free to buyer n + 1
- Obvious observation 1: Rev(A) = OPT(n, D)
- Obvious observation 2: *A* always allocates the item.

- Non obvious:
- The second price auction is the revenue maximizing auction over all auctions that always allocate the item.
 - Why?
- Therefore

 $V(n+1,D) \ge Rev(A) = OPT(n,D)$

SO FAR

- Revelation Principle
- Single parameter environments
 - Second price auctions
 - Myerson's lemma
 - Myerson's optimal auction
 - Cremer-McLean auction for correlated buyers
 - Prophet inequalities
 - Bulow-Klemperer