

Mechanism Design III: Simple single item auctions

Teachers: Ariel Procaccia and Alex Psomas (this time)

SO FAR

- Revelation Principle
- Single parameter environments
- Second price auctions
- Myerson's lemma
- Myerson's optimal auction

CORRECTION IN THE DEFINITION OF MHR

- $\phi(v)=v-\frac{1-F(v)}{f(v)}$
- D is MHR if $\frac{1-F(v)}{f(v)}$ is monotone non increasing.

TODAY

- Cremer-McLean for correlated buyers
- Prophet Inequalities
- Bulow-Klemperer

BEYOND INDEPENDENCE

- Myerson: Optimal auction for independent bidders.
- What if the bidders' values are correlated?
- Very realistic!
- We'll see a 2 agent instance of a result of Cremer and McLean [1998]
- They show how to extract the full social welfare under very mild conditions on the correlation

CREMER-MCLEAN

$\boldsymbol{v}_{\mathbf{1}} / \boldsymbol{v}_{\mathbf{2}}$	1	2	3
1	$1 / 6$	$1 / 12$	$1 / 12$
2	$1 / 12$	$1 / 6$	$1 / 12$
3	$1 / 12$	$1 / 12$	$1 / 6$

Poll 1
How much revenue does a second price auction make (in expectation)?

1. $8 / 6$
2. $10 / 6$
3. $12 / 6$
4. $14 / 6$

CREMER-MCLEAN

$\boldsymbol{v}_{\mathbf{1}} / \boldsymbol{v}_{\mathbf{2}}$	1	2	3
1	$1 / 6$	$1 / 12$	$1 / 12$
2	$1 / 12$	$1 / 6$	$1 / 12$
3	$1 / 12$	$1 / 12$	$1 / 6$

Poll 2
What's the maximum possible revenue an auction can make?

1. $8 / 6$
2. $10 / 6$
3. $12 / 6$
4. $14 / 6$

CREMER-MCLEAN

$\boldsymbol{v}_{\mathbf{1}} / \boldsymbol{v}_{\mathbf{2}}$	1	2	3
1	$1 / 6$	$1 / 12$	$1 / 12$
2	$1 / 12$	$1 / 6$	$1 / 12$
3	$1 / 12$	$1 / 12$	$1 / 6$

- $P_{i, j}=\operatorname{Pr}\left[v_{2}=j \mid v_{1}=i\right]$

$P=$| $1 / 2$ | $1 / 4$ | $1 / 4$ |
| :---: | :---: | :---: |
| $1 / 4$ | $1 / 2$ | $1 / 4$ |
| $1 / 4$ | $1 / 4$ | $1 / 2$ |

- $E\left[\right.$ utility of $v_{1}=1$ from $\left.S P\right]=0$
- $E\left[\right.$ utility of $v_{1}=2$ From $\left.S P\right]=1 / 4 \cdot 1=1 / 4$
- $E\left[\right.$ utility of $v_{1}=3$ from $\left.S P\right]=1 / 4 \cdot 2+1 / 4 \cdot 1=3 / 4$

CREMER-MCLEAN

- Observation: P has full rank
- Therefore, $P \cdot\left(x_{1}, x_{2}, x_{3}\right)^{T}=(0,1 / 4,3 / 4)^{T}$ has a solution:
- $x_{1}=-1, x_{2}=0, x_{3}=2$

The magic part

- Consider the following bet B_{1} for player 1:
- I pay you 1 if $v_{2}=1$
- Nothing happens if $v_{2}=2$
- You pay me 2 if $v_{2}=3$

CREMER-MCLEAN

- Consider the following bet B_{1} for player 1: (a) I pay you 1 if $v_{2}=1$, (b) Nothing happens if $v_{2}=2$, (c) You pay me 2 if $v_{2}=3$
- What's the expected value for taking this bet if $v_{1}=1$?
- $1 / 2 \cdot 1+1 / 4 \cdot 0+1 / 4 \cdot(-2)=0$
- What if $v_{1}=2$? $-1 / 4$
- What if $v_{1}=3$? $-3 / 4$
- Similar bet B_{2} for player 2
- Auction: Player i is offered bet B_{i}. After the bet we'll run a second price auction
- $E\left[\right.$ utility of $\left.v_{1}=1\right]=E\left[\right.$ utility of $\left.B_{1}\right]+$ $E[$ utility from $S P]=0$
- $E\left[\right.$ ut. of $\left.v_{1}=2\right]=-1 / 4+1 / 4=0$
- $E\left[\right.$ ut. of $\left.v_{1}=3\right]=-3 / 4+3 / 4=0$

CREMER-MCLEAN

- Since buyers always have zero utility, and the item is always sold, the seller must be extracting all of the social welfare
- Expected revenue $=14 / 6$
- Wth just happened???
- That's a pretty weird auction!
- This "prediction" is very unlikely to be observed in practice.

MYERSON IS WEIRD

- $n=2 . D_{1}=U[0,1], \mathrm{D}_{2}=\mathrm{U}[0,100]$
- $\phi_{1}\left(v_{1}\right)=2 v_{1}-1, \phi_{2}\left(v_{2}\right)=2 v_{2}-100$
- Optimal auction
- When $v_{1} \leq 1 / 2$ and $v_{2} \geq 50$: Sell to 2 for 50
- When $v_{1}>1 / 2$ and $v_{2}<50$: Sell to 1 for $1 / 2$
- When $0<2 v_{1}-1<2 v_{2}-100$: Sell to 2 for $\left(99+2 v_{1}\right) / 2$ (slightly over 50)
- When $0<2 v_{2}-100<2 v_{1}-1$: Sell to 1 for ($2 v_{2}-$ 99)/2 (slightly over $1 / 2$)
- Wth is this???
- Impossible to explain, unless you go through all of Myerson's calculations!

OPTIMAL AUCTIONS ARE WEIRD

- Weirdness inevitable if you want optimality
- Weirdness inevitable if you're 100% confident in the model
- Take away: Optimality requires complexity
- In the remainder: ask for simplicity and settle for approximately optimal auctions.

CRITIQUE \#1: TOO COMPLEX

A (cool) detour: Prophet inequalities!

PROPHET INEQUALITY

- n treasure boxes.
- Treasure in box i is distributed according to known distribution D_{i}
- In stage i you open box i and see the treasure (realization of the random variable) x_{i}
- After seeing x_{i} you either take it, or discard it forever and move on to stage $i+1$
- What should you do?
- Our goal will be to compete against a prophet who knows the realizations of the $D_{i} \mathrm{~s}$

PROPHET INEQUALITY

$$
D_{1}=U[0,60] \quad D_{1}=\operatorname{Exp}[1 / 60] D_{1}=N[1,1]
$$

$$
D_{1}=U[0,100]
$$

$$
x
$$

$$
x_{2}=52 \sqrt{ }
$$

Our value is 52, Prophet gets 61

PROPHET INEQUALITY

- Optimal policy: Solve it backwards!
- If we get to the last box, we should clearly take x_{n}
- For the second to last, we should take x_{n-1} if it's larger than $E\left[x_{n}\right]$
- We should take x_{n-2} only if it's larger than the expected value of the optimal policy starting at $n-1$, i.e.
$\operatorname{Pr}\left[x_{n-1}>E\left[x_{n}\right]\right] \cdot E\left[x_{n-1} \mid x_{n-1}>E\left[x_{n}\right]\right]+\operatorname{Pr}\left[x_{n-1} \leq\right.$ $\left.E\left[x_{n}\right]\right] \cdot E\left[x_{n}\right]$
- And so on...
- Ok, that's pretty complicated...
- Any simpler policies?
- Focus on policies that set a single threshold t and accept x_{i} if it's above t, otherwise reject
- How good are those?

PROPHET INEQUALITY

- Theorem: There exists a single threshold t^{*} such that the policy that accepts x_{i} when $x_{i} \geq t^{*}$ gives expected reward at least $\frac{1}{2} E\left[\max _{i} x_{i}\right]$, i.e. at least half of what the prophet makes (in expectation).

PROPHET INEQUALITY

Proof

- $Z^{+}=\max \{z, 0\}$
- Given a "threshold policy" with threshold t, let $q(t)=\operatorname{Pr}[$ policy accepts no prize]
- Large t : large $q(t)$, but big rewards
- Small t : small $q(t)$, but small rewards
- $E[$ reward $] \geq q(t) \cdot 0+(1-q(t)) \cdot t$
- A little too pessimistic...
- When $x_{i} \geq t$ we'll count x_{i}, not t

PROPHET INEQUALITY

$$
E[\text { reward }]=t(1-q(t))+
$$

$$
\sum_{i} E\left[x_{i}-t \mid x_{i} \geq t \& x_{j}<t, \forall j \neq i\right] \cdot \operatorname{Pr}\left[x_{i} \geq t \& x_{j}<t, \forall j \neq i\right]
$$

$$
=t(1-q(t))+
$$

$$
\sum_{i} E\left[x_{i}-t \mid x_{i} \geq t\right] \cdot \operatorname{Pr}\left[x_{i} \geq t\right] \cdot \operatorname{Pr}\left[x_{j}<t, \forall j \neq i\right]
$$

$$
=t(1-q(t))+\sum_{i} E\left[\left(x_{i}-t\right)^{+}\right] \cdot \operatorname{Pr}\left[x_{j}<t, \forall j \neq i\right]
$$

$$
\geq t(1-q(t))+q(t) \sum_{i} E\left[\left(x_{i}-t\right)^{+}\right]
$$

(we used that $q(t)=\operatorname{Pr}\left[x_{j}<t, \forall j\right] \leq \operatorname{Pr}\left[x_{j}<t, \forall j \neq \mathrm{i}\right]$)

PROPHET INEQUALITY

$E[$ reward $] \geq t(1-q(t))+q(t) \sum_{i} E\left[\left(x_{i}-t\right)^{+}\right]$

$$
\begin{aligned}
E\left[\max _{i} x_{i}\right] & =E\left[t+\max _{i}\left(x_{i}-t\right)\right] \\
& =t+E\left[\max _{i}\left(x_{i}-t\right)\right] \\
& \leq t+E\left[\max _{i}\left(x_{i}-t\right)^{+}\right] \\
& \leq t+\sum_{i} E\left[\left(x_{i}-t\right)^{+}\right]
\end{aligned}
$$

$t^{*}: q\left(t^{*}\right)=1 / 2$
$E[$ reward $] \geq \frac{t^{*}}{2}+\frac{1}{2} \sum_{i} E\left[\left(x_{i}-t^{*}\right)^{+}\right] \geq \frac{1}{2} E\left[\max _{i} x_{i}\right]$

BACK TO AUCTIONS

- $\operatorname{Rev}=E\left[\sum_{i} \phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right)\right]=E\left[\max _{i} \phi_{i}\left(v_{i}\right)^{+}\right]$
- Pick t^{*} such that $\operatorname{Pr}\left[\max _{i} \phi_{i}\left(v_{i}\right)^{+} \geq t^{*}\right]=1 / 2$
- Give item to bidder i if $\phi_{i}\left(v_{i}\right) \geq t^{*}$
- Prophet inequality gives
$E[$ reward $]=E\left[\sum_{i} \phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right) \geq \frac{1}{2} E\left[\max _{i} \phi_{i}\left(v_{i}\right)^{+}\right]\right.$
- More concretely:
- $r_{i}=\phi_{i}^{-1}\left(t^{*}\right)$
- Remove all bidders with $b_{i}<r_{i}$
- Run a second price with the remaining bidders

CRITIQUE \#2: TOO MUCH

DEPENDENCE ON THE DISTRIBUTION

- Optimal auction depends on the distribution
- Wasn't the whole point of the Bayesian approach that this is unavoidable?
- We'll assume that $v_{i} \sim D_{i}$ (in the analysis), but our auctions will not depend on the $D_{i} S$
- "Prior independent" mechanism design

PRIOR INDEPENDENT MECHANISMS

- Sounds pretty optimistic...
- Existence of a good prior independent auction A for (say) regular distributions implies that a single auction can compete with all the (uncountably many) optimal auctions, tailored to each distribution, simultaneously!
- Pretty wild!
- Any candidates?
- Second price auction!

BULOW-KLEMPERER THEOREM

- OPT $(n, D)=$ Expected revenue of optimal auction with n i.i.d. buyers from D.
- $V(n, D)=$ Expected revenue of Vickrey with n i.i.d. buyers from D.
- Theorem (1996): For all regular D we have

$$
V(n+1, D) \geq O P T(n, D)
$$

- In more modern language: "The competition complexity of single-item auctions with regular distributions is $1^{\prime \prime}$
- The competition complexity of n bidders with additive valuations over m independent, regular items is at least logm and at most $\mathrm{n}+2 m-2$ [EFFTW 17]

BULOW-KLEMPERER THEOREM

- Theorem (1996): For all regular D we have

$$
V(n+1, D) \geq O P T(n, D)
$$

- Intuitively: It is better to increase competition by a single buyer than invest in learning the underlying distribution!

BULOW-KLEMPERER THEOREM

Proof:

- Let A be the following auction for $n+1$ buyers from D :
- Run $\operatorname{OPT}(n, D)$ on buyers $1, \ldots, n$
- If the item is not sold, give it for free to buyer $n+1$
- Obvious observation 1: $\operatorname{Rev}(A)=O P T(n, D)$
- Obvious observation 2: A always allocates the item.

BULOW-KLEMPERER THEOREM

- Non obvious:
- The second price auction is the revenue maximizing auction over all auctions that always allocate the item.
- Why?
- Therefore

$$
V(n+1, D) \geq \operatorname{Rev}(A)=O P T(n, D)
$$

SO FAR

- Revelation Principle
- Single parameter environments
- Second price auctions
- Myerson's lemma
- Myerson's optimal auction
- Cremer-McLean auction for correlated buyers
- Prophet inequalities
- Bulow-Klemperer

