

Mechanism Design II: Revenue

Teachers: Ariel Procaccia and Alex Psomas (this time)

LAST TIME

- Second price auctions:
- Maximize social welfare $\sum_{i} v_{i} x_{i}(\vec{v})$
- Can we give buyers more utility?
- DSIC
- Polytime computable
- Myerson's lemma:
- In a single parameter environment, an allocation rule x is implementable iff it is monotone. Furthermore, there is a unique payment that makes (x, p) DSIC.

LAST TIME

OBSERVATION: ALLOCATE TO THE BIDDER WITH THE HIGHEST VALUE

TODAY: REVENUE

- Why would we maximize social welfare?
- More reasonable to assume that sellers are trying to maximize revenue!
- For example, for $n=1$ bidders, second price gives the item for free!
- Pretty unreasonable...

ROGER MYERSON

MAXIMIZE REVENUE

- Focus on a single bidder, with private value v
- Make a take-it-or-leave-it offer
- For a single bidder this is the only deterministic DSIC mechanism
- How much should we price the item at?
- If we magically knew v, we would set a price of v, but v is private...

EXAMPLE

Poll 1

How much would you price this boat?

EXAMPLE

- A price of r yields revenue r if $v \geq r$, and 0 otherwise
- A price of $10,000 \$$ is
- Good if v is slightly higher than $10,000 \$$
- Bad if v is a lot higher than $10,000 \$$
- Horrible if v is $9,999 \$$

REVENUE

- Different auctions perform different on different inputs.
- Contrast this with social welfare.
- We take a Bayesian approach!
- The private value v_{i} of bidder i is drawn from a known distribution D_{i}.
- Today: distributions' support is [0, $v_{\max }$]
- Goal: Maximize expected revenue over all DSIC and IR mechanisms.

WHY DSIC?

- Easy for participants to figure out what to bid
- The seller can predict what the bidders will do assuming only that they bid their dominant strategy
- Pretty weak behavioral assumption
- Can you make more money with a non-DSIC mechanism??
- Today: no!
- Generally: yes!

REVELATION PRINCIPLE

- Optimize over the space of all DSIC mechanisms???
- That sounds super hard...
- It suffices to focus on direct revelation mechanisms!
- You reveal your private information to the system.
- As opposed to setting up a weird auction, where agents have dominant strategies

REVELATION PRINCIPLE

THE GAME

1. Seller is told distributions D_{i} for each buyer
2. Seller commits to a DSIC auction (x, p)
3. Nature draws v_{i} from D_{i}.

- Today: independent $D_{i} \mathrm{~S}$

4. Agent i learns v_{i}
5. Agent i submits bid b_{i}
6. Item is allocated according to $x(\vec{b})$, and payments are transferred according to $p(\vec{b})$

Goal:

- We take the seller's perspective.
- Design a DSIC and IR auction that maximizes expected revenue (expectation with respect to randomness in D and randomness in the auction)

SINGLE BUYER

- Expected revenue from setting a price of p

$$
p \cdot \operatorname{Pr}[v \geq p]=p \cdot(1-F(p))
$$

- Say $D=U[0,1]$
- $\operatorname{Rev}(p)=p \cdot(1-F(p))=p \cdot(1-p)$
- $\operatorname{Rev}^{\prime}(p)=-2 p+1=0 \rightarrow p=\frac{1}{2}$
- Expected revenue $=\frac{1}{4}$
- This is optimal!
- What about two bidders??

TWO BIDDERS

- Say $D_{1}=D_{2}=D=U[0,1]$
- We could run a second price auction...
- What's the expected revenue?
- Observation: $E[R e v]=E\left[\min \left\{v_{1}, v_{2}\right\}\right]$
- $\operatorname{Pr}\left[\min \left\{v_{1}, v_{2}\right\} \geq x\right]=\operatorname{Pr}\left[v_{1} \geq x \& v_{2} \geq x\right]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[v_{1} \geq x\right] \cdot \operatorname{Pr}\left[v_{2} \geq \mathrm{x}\right] \\
& =(1-x)^{2}
\end{aligned}
$$

- $E[\min]=\int_{x=0}^{1} \operatorname{Pr}[\min \geq x] d x=1 / 3$

TWO BIDDERS

- $D_{1}=D_{2}=D=U[0,1]$
- Second price auction gives $1 / 3$
- Can we do better?
- What if we never sell under $1 / 2$?
- Similar to what we did for one buyer.
- If highest bid $>\frac{1}{2}$: Highest bidder pays the maximum of $1 / 2$ and the second highest bid
- If highest bid $<\frac{1}{2}$: No one gets the item
- Expected revenue of this auction is $\frac{5}{12}>\frac{1}{3}$
- Can we do better???

MYERSON

- The expected revenue of a DSIC auction (x, p) is equal to

$$
\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} p_{i}(\vec{v})\right]
$$

- For this results we assume independent buyer distributions.
- Goal: give a formula for the expected revenue that's easier to maximize!

MYERSON

- Step 0: Move things around: $\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} p_{i}(\vec{v})\right]=\sum_{i=1}^{n} \mathbb{E}_{v_{-i}}\left[\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]\right]$

MYERSON

- $\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} p_{i}(\vec{v})\right]=\sum_{i=1}^{n} \mathbb{E}_{v_{-i}}\left[\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]\right]$
- Step 1: Apply Myerson's lemma

$$
p_{i}\left(v, b_{-i}\right)=v x_{i}\left(v, b_{-i}\right)-\int_{0}^{v} x_{i}\left(z, b_{-i}\right) d z
$$

- $\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]=\int_{0}^{v_{\text {max }}} p_{i}\left(v_{i}, v_{-i}\right) f_{i}\left(v_{i}\right) d v_{i}$
$=\int_{0}^{v_{\max }}\left(v_{i} x_{i}\left(v_{i}, v_{-i}\right)-\int_{0}^{v_{i}} x_{i}\left(z, v_{-i}\right) d z\right) f_{i}\left(v_{i}\right) d v_{i}$
$=\int_{0}^{v_{\max }} v_{i} x_{i}\left(v_{i}, v_{-i}\right) f_{i}\left(v_{i}\right) d v_{i}-$

$$
\int_{0}^{v_{\max }} \int_{0}^{v_{i}} x_{i}\left(z, v_{-i}\right) f_{i}\left(v_{i}\right) d z d v_{i}
$$

MYERSON

$$
\begin{gathered}
\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]=\int_{0}^{v_{\max }} v_{i} x_{i}\left(v_{i}, v_{-i}\right) f_{i}\left(v_{i}\right) d v_{i}- \\
\int_{0}^{v_{\max }} \int_{0}^{v_{i}} x_{i}\left(z, v_{-i}\right) f_{i}\left(v_{i}\right) d z d v_{i}
\end{gathered}
$$

- Step 2: Change order of integration
- $\int_{0}^{v_{\max }} \int_{0}^{v_{i}} x_{i}\left(z, v_{-i}\right) f_{i}\left(v_{i}\right) d z d v_{i}$

$$
\begin{aligned}
& =\int_{0}^{v_{\max }} x_{i}\left(z, v_{-i}\right) \int_{z}^{v_{\max }} f_{i}\left(v_{i}\right) d v_{i} d z \\
& =\int_{0}^{v_{\max }} x_{i}\left(z, v_{-i}\right)\left(1-F_{i}(z)\right) d z
\end{aligned}
$$

MYERSON

$$
\begin{gathered}
\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]=\int_{0}^{v_{\max }} v_{i} x_{i}\left(v_{i}, v_{-i}\right) f_{i}\left(v_{i}\right) d v_{i}- \\
\int_{0}^{v_{\max }} x_{i}\left(v_{i}, v_{-i}\right)\left(1-F_{i}\left(v_{i}\right)\right) d v_{i}
\end{gathered}
$$

- Step 3: Combine
- $\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]=$

$$
\int_{0}^{v_{\max }} f_{i}\left(v_{i}\right) x_{i}\left(v_{i}, v_{-i}\right)\left(v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}\right) d v_{i}
$$

MYERSON

- $\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]=$

$$
\int_{0}^{v_{\max }} f_{i}\left(v_{i}\right) x_{i}\left(v_{i}, v_{-i}\right)\left(v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}\right) d v_{i}
$$

- Step 4: A definition:

The virtual value of bidder i is

$$
\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

MYERSON

$$
\begin{gathered}
\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]=\mathbb{E}_{v_{i}}\left[x_{i}\left(v_{i}, v_{-i}\right) \cdot \phi_{i}\left(v_{i}\right)\right] \\
\text { where } \phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
\end{gathered}
$$

- Step 5: Plug everything back:

$$
\begin{gathered}
\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} p_{i}(\vec{v})\right]=\sum_{i=1}^{n} \mathbb{E}_{v_{-i}}\left[\mathbb{E}_{v_{i}}\left[p_{i}\left(v_{i}, v_{-i}\right)\right]\right] \\
=\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) \cdot x_{i}\left(v_{i}, v_{-i}\right)\right]
\end{gathered}
$$

MYERSON

- $\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} p_{i}(\vec{v})\right]=$

$$
\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) \cdot x_{i}\left(v_{i}, v_{-i}\right)\right]
$$

- Ok, let's parse this...
- Maximizing expected revenue is the same as maximizing the expected virtual welfare!
- We (kind of)already know how to solve that!
- Second price auction (but in virtual value space).

MYERSON

- Old problem:

$$
\max \mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} p_{i}(\vec{v})\right]
$$

Subject to

$$
\begin{gathered}
v_{i} x_{i}\left(v_{i}, v_{-i}\right)-p_{i}\left(v_{i}, v_{-i}\right) \geq v_{i} x_{i}\left(v^{\prime}, v_{-i}\right)-p_{i}\left(v^{\prime}, v_{-i}\right) \\
v_{i} x_{i}\left(v_{i}, v_{-i}\right)-p_{i}\left(v_{i}, v_{-i}\right) \geq 0 \\
\sum_{i} x_{i}(\vec{v}) \leq 1
\end{gathered}
$$

- New problem:

$$
\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) \cdot x_{i}\left(v_{i}, v_{-i}\right)\right]
$$

Subject to

$$
\sum_{i} x_{i}(\vec{v}) \leq 1
$$

MYERSON

- Maximize $\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) \cdot x_{i}\left(v_{i}, v_{-i}\right)\right]$
- We can maximize this pointwise!

MYERSON

- Example: $n=2, D_{1}$ and D_{2} have support size \{0,1\}
- Maximize
$\operatorname{Pr}\left[v_{1}=0, v_{2}=0\right]\left(\phi_{1}(0) x_{1}(0,0)+\phi_{2}(0) x_{2}(0,0)\right)+$ $\operatorname{Pr}\left[v_{1}=0, v_{2}=1\right]\left(\phi_{1}(0) x_{1}(0,1)+\phi_{2}(1) x_{2}(0,1)\right)+$ $\operatorname{Pr}\left[v_{1}=1, v_{2}=0\right]\left(\phi_{1}(1) x_{1}(1,0)+\phi_{2}(0) x_{2}(1,0)\right)+$ $\operatorname{Pr}\left[v_{1}=1, v_{2}=1\right]\left(\phi_{1}(1) x_{1}(1,1)+\phi_{2}(1) x_{2}(1,1)\right)$
- Subject to

$$
x_{1}(i, j)+x_{2}(i, j) \leq 1, \text { for all } i, j \in\{0,1\}
$$

MYERSON

- Maximize $\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) \cdot x_{i}\left(v_{i}, v_{-i}\right)\right]$
- We can maximize this pointwise!
- Who gets the item?

Highest virtual value!

- How much do they pay:
- Second highest virtual value?? The value they would have to bid in order to lose!

Kind of...

POLL

- Maximize $\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) \cdot x_{i}\left(v_{i}, v_{-i}\right)\right]$
- $\phi_{1}\left(v_{1}\right)=v_{1}-1$
- $\phi_{2}\left(v_{2}\right)=v_{2}-1$
- $v_{1}=1 / 2$
- $v_{2}=1 / 4$

Poll 2

Who gets the item?

1. 1
2. Half, half
3. 2
4. Neither

POLL

- Maximize $\mathbb{E}_{\vec{v} \sim D}\left[\sum_{i=1}^{n} \phi_{i}\left(v_{i}\right) \cdot x_{i}\left(v_{i}, v_{-i}\right)\right]$
- $\phi_{1}\left(v_{1}\right)=2 v_{1}-1$
- $\phi_{2}\left(v_{2}\right)=v_{2}-1$
- $v_{1}=1$
- $v_{2}=1 / 4$

Poll 3

Who gets the item? How much do they pay?

1. $1,-3 / 4$
2. $1,1 / 2$
3. 1,0
4. $1,1 / 4$

MYERSON

- Allocate to the agent with the highest virtual value (if it's non-negative).
- No! The allocation rule might not be monotone!
- $\phi_{i}(v)$ might decrease as v increases
- Myerson provided a solution to this: "iron" the virtual value function.
- We won't cover this.

MYERSON

- Definition: A distribution with cdf F and pdf f is called regular if $\phi(v)=v-\frac{1-F(v)}{f(v)}$ is monotone non-decreasing
- If $\frac{1-F(v)}{f(v)}$ is monotone non-increasing we say that the distribution has monotone hazard rate (MHR).
- Most distributions you know are regular (and MHR): uniform, exponential, Normal, Gamma, etc etc.
- Intuitively, regular = small tail

MYERSON: REGULAR DISTRIBUTIONS

- Give the item to the agent with the highest virtual value, or no one if all virtual values are negative.
- Good news: monotone allocation rule
- Weird news: Highest virtual value \neq highest value!
- $\phi_{1}\left(v_{1}\right)=2 v_{1}-1, \phi_{2}\left(v_{2}\right)=2 v_{2}-100$
- $v_{1}=0.6, v_{2}=50 \rightarrow$ Agent 1 wins!

MYERSON: REGULAR DISTRIBUTIONS

- Give the item to the agent with the highest virtual value, or no one if all virtual values are negative.
- If the item was given to agent i
- Let j be the agent with the second highest virtual value
- If $\phi_{j}\left(v_{j}\right)<0, i$ pays $\phi_{i}^{-1}(0)$
- If $\phi_{j}\left(v_{j}\right) \geq 0, i$ pays $\phi_{i}^{-1}\left(\phi_{j}\left(v_{j}\right)\right)$
- Different way to think about it:
- Seller inserts her own bids (in v.v. space) $\phi_{1}^{-1}(0), \phi_{2}^{-1}(0), \ldots$

MYERSON: IDENTICAL REGULAR DISTRIBUTIONS

- Actually simple if all agents have the same distribution $D=D_{i}, \forall i$
- Give the item to the agent with the highest virtual value, or no one if all virtual values are negative.
- Highest virtual value = Highest value
- Rephrase: Give the item to the agent with the highest value, if her virtual value is non-negative.
- If the item was given to agent i, she pays the maximum of the second highest bid and $\phi^{-1}(0)$
- In other words, the optimal auction is a second price auction with a reserve of $\phi^{-1}(0)$
- Does this look familiar?
- Precisely the E-Bay format!

EXAMPLE

- 2 agents, $D_{1}=D_{2}=D=U[0,1]$
- $\phi(v)=v-\frac{1-F(v)}{f(v)}=v-\frac{1-v}{1}=2 v-1$
- Allocation rule: give it to the person with the highest virtual value $\phi\left(v_{i}\right)$, if its nonnegative
- Aka, give it to the person with the highest value v_{i}, if its at least $1 / 2$
- Charge max\{1⁄2, other bid\}

SUMMARY

- Single parameter environments
- Second price auctions
- Myerson's lemma
- Myerson's optimal auction

