

Mechanism Design II: Revenue

Teachers: Ariel Procaccia and Alex Psomas (this time)

LAST TIME

- Second price auctions:
 - Maximize social welfare $\sum_i v_i x_i(\vec{v})$
 - Can we give buyers more utility?
 - DSIC
 - Polytime computable
- Myerson's lemma:
 - In a single parameter environment, an allocation rule x is implementable iff it is monotone. Furthermore, there is a unique payment that makes (x, p) DSIC.

LAST TIME

V

OBSERVATION: ALLOCATE TO THE BIDDER WITH THE HIGHEST VALUE

TODAY: REVENUE

- Why would we maximize social welfare?
- More reasonable to assume that sellers are trying to maximize revenue!
- For example, for *n* = 1 bidders, second price gives the item for free!

• Pretty unreasonable...

ROGER MYERSON

MAXIMIZE REVENUE

- Focus on a single bidder, with private value *v*
- Make a take-it-or-leave-it offer
 - For a single bidder this is the only deterministic
 DSIC mechanism
- How much should we price the item at?
- If we magically knew *v*, we would set a price of *v*, but *v* is private...

EXAMPLE

Poll 1

How much would you price this boat?

EXAMPLE

- A price of r yields revenue r if $v \ge r$, and 0 otherwise
- A price of 10,000\$ is
 - Good if *v* is slightly higher than 10,000\$
 - Bad if *v* is a lot higher than 10,000\$
 - Horrible if v is 9,999\$

REVENUE

- Different auctions perform different on different inputs.
 - Contrast this with social welfare.
- We take a Bayesian approach!
- The private value v_i of bidder i is drawn from a known distribution D_i.
 - Today: distributions' support is $[0, v_{max}]$
- Goal: Maximize **expected** revenue over all DSIC and IR mechanisms.

WHY DSIC?

- Easy for participants to figure out what to bid
- The seller can predict what the bidders will do assuming only that they bid their dominant strategy

Pretty weak behavioral assumption

- Can you make more money with a non-DSIC mechanism??
 - Today: no!
 - Generally: yes!

REVELATION PRINCIPLE

- Optimize over the space of all DSIC mechanisms???
- That sounds super hard...
- It suffices to focus on direct revelation mechanisms!
 - You reveal your private information to the system.
 - As opposed to setting up a weird auction, where agents have dominant strategies

REVELATION PRINCIPLE

THE GAME

- 1. Seller is told distributions D_i for each buyer
- 2. Seller commits to a DSIC auction (*x*, *p*)
- 3. Nature draws v_i from D_i .
 - Today: independent D_i s
- 4. Agent *i* learns v_i
- 5. Agent *i* submits bid b_i
- 6. Item is allocated according to $x(\vec{b})$, and payments are transferred according to $p(\vec{b})$

Goal:

- We take the seller's perspective.
- Design a DSIC and IR auction that maximizes expected revenue (expectation with respect to randomness in *D* and randomness in the auction)

SINGLE BUYER

- Expected revenue from setting a price of p $p \cdot \Pr[v \ge p] = p \cdot (1 - F(p))$
- Say D = U[0,1]

•
$$Rev(p) = p \cdot (1 - F(p)) = p \cdot (1 - p)$$

•
$$Rev'(p) = -2p + 1 = 0 \rightarrow p = \frac{1}{2}$$

- Expected revenue = $\frac{1}{4}$
- This is optimal!
- What about two bidders??

TWO BIDDERS

- Say $D_1 = D_2 = D = U[0,1]$
- We could run a second price auction...
- What's the expected revenue?
- Observation: $E[Rev] = E[\min\{v_1, v_2\}]$
- $\Pr[\min\{v_1, v_2\} \ge x] = \Pr[v_1 \ge x \& v_2 \ge x]$ = $\Pr[v_1 \ge x] \cdot \Pr[v_2 \ge x]$ = $(1 - x)^2$
- $E[min] = \int_{x=0}^{1} \Pr[min \ge x] \, dx = 1/3$

TWO BIDDERS

- $D_1 = D_2 = D = U[0,1]$
- Second price auction gives 1/3
- Can we do better?
- What if we never sell under $\frac{1}{2}$?
 - Similar to what we did for one buyer.
- If highest bid > $\frac{1}{2}$: Highest bidder pays the maximum of $\frac{1}{2}$ and the second highest bid
- If highest bid $< \frac{1}{2}$: No one gets the item
- Expected revenue of this auction is $\frac{5}{12} > \frac{1}{3}$
- Can we do better???

• The expected revenue of a DSIC auction (*x*, *p*) is equal to

- For this results we assume **independent** buyer distributions.
- **Goal**: give a formula for the expected revenue that's easier to maximize!

- Step 0: Move things around:
- $\mathbb{E}_{\vec{v}\sim D}\left[\sum_{i=1}^{n} p_i(\vec{v})\right] = \sum_{i=1}^{n} \mathbb{E}_{v_{-i}}\left[\mathbb{E}_{v_i}\left[p_i(v_i, v_{-i})\right]\right]$

- $\mathbb{E}_{\vec{v}\sim D}[\sum_{i=1}^{n} p_i(\vec{v})] = \sum_{i=1}^{n} \mathbb{E}_{v_{-i}}[\mathbb{E}_{v_i}[p_i(v_i, v_{-i})]]$
- Step 1: Apply Myerson's lemma

$$p_i(v, b_{-i}) = v x_i(v, b_{-i}) - \int_0^v x_i(z, b_{-i}) dz$$

•
$$\mathbb{E}_{v_i}[p_i(v_i, v_{-i})] = \int_0^{v_{\max}} p_i(v_i, v_{-i})f_i(v_i)dv_i$$

= $\int_0^{v_{\max}} \left(v_i x_i(v_i, v_{-i}) - \int_0^{v_i} x_i(z, v_{-i})dz \right) f_i(v_i)dv_i$

$$= \int_{0}^{v_{max}} v_{i} x_{i}(v_{i}, v_{-i}) f_{i}(v_{i}) dv_{i} - \int_{0}^{v_{max}} \int_{0}^{v_{i}} x_{i}(z, v_{-i}) f_{i}(v_{i}) dz dv_{i}$$

$$\mathbb{E}_{v_i}[p_i(v_i, v_{-i})] = \int_0^{v_{max}} v_i x_i(v_i, v_{-i}) f_i(v_i) dv_i - \int_0^{v_{max}} \int_0^{v_i} x_i(z, v_{-i}) f_i(v_i) dz dv_i$$

• Step 2: Change order of integration

•
$$\int_{0}^{v_{max}} \int_{0}^{v_{i}} x_{i}(z, v_{-i}) f_{i}(v_{i}) dz dv_{i}$$

=
$$\int_{0}^{v_{max}} x_{i}(z, v_{-i}) \int_{z}^{v_{max}} f_{i}(v_{i}) dv_{i} dz$$

=
$$\int_{0}^{v_{max}} x_{i}(z, v_{-i}) (1 - F_{i}(z)) dz$$

$$\mathbb{E}_{v_i}[p_i(v_i, v_{-i})] = \int_0^{v_{max}} v_i x_i(v_i, v_{-i}) f_i(v_i) dv_i - \int_0^{v_{max}} x_i(v_i, v_{-i}) (1 - F_i(v_i)) dv_i$$

• Step 3: Combine

•
$$\mathbb{E}_{v_i}[p_i(v_i, v_{-i})] = \int_0^{v_{max}} f_i(v_i) x_i(v_i, v_{-i}) \left(v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}\right) dv_i$$

•
$$\mathbb{E}_{v_i}[p_i(v_i, v_{-i})] = \int_0^{v_{max}} f_i(v_i) x_i(v_i, v_{-i}) \left(v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}\right) dv_i$$

• Step 4: A definition:

The **virtual value** of bidder *i* is

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

$$\mathbb{E}_{v_i}[p_i(v_i, v_{-i})] = \mathbb{E}_{v_i}[x_i(v_i, v_{-i}) \cdot \phi_i(v_i)]$$

where $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$

• Step 5: Plug everything back: $\mathbb{E}_{\vec{v}\sim D}\left[\sum_{i=1}^{n} p_i(\vec{v})\right] = \sum_{i=1}^{n} \mathbb{E}_{v_{-i}}\left[\mathbb{E}_{v_i}\left[p_i(v_i, v_{-i})\right]\right]$ $= \mathbb{E}_{\vec{v}\sim D}\left[\sum_{i=1}^{n} \phi_i(v_i) \cdot x_i(v_i, v_{-i})\right]$

- Ok, let's parse this...
- Maximizing expected revenue is the same as maximizing the expected virtual welfare!
- We (kind of)already know how to solve that!
- Second price auction (but in virtual value space).

• Old problem:

$$\max \mathbb{E}_{\vec{v} \sim D} \left[\sum_{i=1}^{n} p_i(\vec{v}) \right]$$

Subject to
 $v_i x_i(v_i, v_{-i}) - p_i(v_i, v_{-i}) \ge v_i x_i(v', v_{-i}) - p_i(v', v_{-i})$
 $v_i x_i(v_i, v_{-i}) - p_i(v_i, v_{-i}) \ge 0$
 $\sum_i x_i(\vec{v}) \le 1$

• New problem:

$$\mathbb{E}_{\vec{v}\sim D}\left[\sum_{i=1}^{n}\phi_{i}(v_{i})\cdot x_{i}(v_{i},v_{-i})\right]$$

Subject to

$$\sum_{i} x_i(\vec{v}) \le 1$$

- Maximize $\mathbb{E}_{\vec{v}\sim D}[\sum_{i=1}^{n}\phi_{i}(v_{i})\cdot x_{i}(v_{i},v_{-i})]$
- We can maximize this pointwise!

- Example: n = 2, D_1 and D_2 have support size $\{0,1\}$
- Maximize

 $Pr[v_1 = 0, v_2 = 0](\phi_1(0)x_1(0,0) + \phi_2(0)x_2(0,0)) +$ $Pr[v_1 = 0, v_2 = 1](\phi_1(0)x_1(0,1) + \phi_2(1)x_2(0,1)) +$ $Pr[v_1 = 1, v_2 = 0](\phi_1(1)x_1(1,0) + \phi_2(0)x_2(1,0)) +$ $Pr[v_1 = 1, v_2 = 1](\phi_1(1)x_1(1,1) + \phi_2(1)x_2(1,1))$

• Subject to

 $x_1(i,j) + x_2(i,j) \le 1$, for all $i,j \in \{0,1\}$

- Maximize $\mathbb{E}_{\vec{v}\sim D}[\sum_{i=1}^{n} \phi_i(v_i) \cdot x_i(v_i, v_{-i})]$
- We can maximize this pointwise!
- Who gets the item?
 Highest virtual value!
 How much do they pay?
 Second highest virtual value??
 The value they would have to bid in order to lose!

Kind of.

POLL

- Maximize $\mathbb{E}_{\vec{v}\sim D}[\sum_{i=1}^{n}\phi_{i}(v_{i})\cdot x_{i}(v_{i},v_{-i})]$
- $\phi_1(v_1) = v_1 1$
- $\phi_2(v_2) = v_2 1$
- $v_1 = 1/2$

POLL

- Maximize $\mathbb{E}_{\vec{v}\sim D}[\sum_{i=1}^{n}\phi_{i}(v_{i})\cdot x_{i}(v_{i},v_{-i})]$
- $\phi_1(v_1) = 2v_1 1$
- $\phi_2(v_2) = v_2 1$
- $v_1 = 1$

• $v_2 = 1/4$ Poll 3 Who gets the item? How much do they pay? 1. 1, -3/4 2. 1, 1/2 No 4. 1, 1/4

- Allocate to the agent with the highest virtual value (if it's non-negative).
- No! The allocation rule might not be monotone!
 - $\phi_i(v)$ might decrease as v increases
- Myerson provided a solution to this: "iron" the virtual value function.
 - We won't cover this.

- <u>Definition</u>: A distribution with cdf *F* and pdf *f* is called **regular** if $\phi(v) = v - \frac{1-F(v)}{f(v)}$ is monotone non-decreasing
 - If $\frac{1-F(v)}{f(v)}$ is monotone non-increasing we say that the distribution has **monotone hazard rate** (MHR).
- Most distributions you know are regular (and MHR): uniform, exponential, Normal, Gamma, etc etc.
- Intuitively, regular = small tail

MYERSON: REGULAR DISTRIBUTIONS

- Give the item to the agent with the highest virtual value, or no one if all virtual values are negative.
 - Good news: monotone allocation rule
 - Weird news: Highest virtual value ≠ highest value!
- $\phi_1(v_1) = 2v_1 1, \phi_2(v_2) = 2v_2 100$ • $v_1 = 0.6, v_2 = 50 \rightarrow \text{Agent 1 wins!}$

MYERSON: REGULAR DISTRIBUTIONS

- Give the item to the agent with the highest virtual value, or no one if all virtual values are negative.
- If the item was given to agent *i*
 - Let *j* be the agent with the second highest virtual value

• If
$$\phi_j(v_j) < 0$$
, *i* pays $\phi_i^{-1}(0)$

- If $\phi_j(v_j) \ge 0$, *i* pays $\phi_i^{-1}(\phi_j(v_j))$
- Different way to think about it:
 - Seller inserts her own bids (in v.v. space) $\phi_1^{-1}(0), \phi_2^{-1}(0), \dots$

MYERSON: IDENTICAL REGULAR DISTRIBUTIONS

- Actually simple if all agents have the same distribution $D = D_i$, $\forall i$
- Give the item to the agent with the highest virtual value, or no one if all virtual values are negative.
 - Highest virtual value = Highest value
 - Rephrase: Give the item to the agent with the highest value, if her virtual value is non-negative.
- If the item was given to agent *i*, she pays the maximum of the second highest bid and $\phi^{-1}(0)$
- In other words, the optimal auction is a second price auction with a reserve of $\phi^{-1}(0)$
 - Does this look familiar?
 - Precisely the E-Bay format!

EXAMPLE

• 2 agents, $D_1 = D_2 = D = U[0,1]$

•
$$\phi(v) = v - \frac{1 - F(v)}{f(v)} = v - \frac{1 - v}{1} = 2v - 1$$

- Allocation rule: give it to the person with the highest virtual value $\phi(v_i)$, if its non-negative
- Aka, give it to the person with the highest value v_i , if its at least $\frac{1}{2}$
- Charge max{¹/₂, *other bid*}

SUMMARY

- Single parameter environments
 - Second price auctions
 - Myerson's lemma
 - Myerson's optimal auction