

One more interesting game

"Ultimatum game":

- Two players "Splitter" and "Chooser"
- 3rd party puts \$10 on table.
- Splitter gets to decide how to split between himself and Chooser.
- · Chooser can accept or reject.
- If reject, money is burned.

Stackelberg leader strategies

Strategy such that if you announce it and opponent best-responds to you, you are best off.

Need not be a Nash equilibrium.

Compete Leave		
Price high	(3,3)	(6,1)
Price low	(2,0)	(4,1)

Stackelberg leader strategies

Can solve efficiently. Say we're row player:

- For each column j, solve for p to maximize our expected gain s.t. j is best-response.
- · Choose best.

Compete Leave		
Price high	(3,3)	(6,1)
Price low	(2,0)	(4,1)

Hardness of computing Nash equilibria

Looking at 2-player n-action games.

2 types of results:

- NP-hardness for NE with special properties [Gilboa-Zemel] [Conitzer-Sandholm]
 - Is there one with payoff at least v for row?
 - Is there one using row #1?
 - Is there more than one?

- ...

PPAD-hardness for finding any NE.
 [Chen-Deng][Daskalakis-Goldberg-Papadimitriou]

Hardness of computing Nash equilibria

NP-hardness for NE with special properties Basic idea:

- Given 3-SAT formula F, create a game with one row for each literal, variable, & clause.
- Also a default attractor action f. $C = R^T$.
- Somehow set things up so that except for (f,f), all NE must correspond to satisfying assignments.

Hardness of computing Nash equilibria

NP-hardness for NE special properties

 $[x' \approx -n]$. These negative values for matches]

- · (f,f) is default equilibrium.
- · Unif over literals of satisfying assn are NE. Also mixture

What about just finding some NE?

This is "PPAD" hard.

What's that?

What about just finding some NE?

Consider the following problem:

- Given two circuits C_{next} and C_{prev}, each with n-bit input, n-bit output.
- View as defining directed graph G: $u \rightarrow v$ iff $C_{next}(u) = v$ and $C_{prev}(v) = u$. (indeg ≤ 1 , outdeg ≤ 1)

What about just finding some NE?

Consider the following problem:

- Given two circuits C_{next} and C_{prev} , each with n-bit input, n-bit output.
- View as defining directed graph G:
 u→v iff C_{next}(u)=v and C_{prev}(v)=u. (indeg ≤1, outdeg ≤1)
- Say v "unbalanced" if indeg(v) ≠ outdeg(v).
- If On is unbalanced, then find another unbalanced node. (must exist)

This is PPAD
"END OF THE LINE

What about just finding some NE? Why isn't this problem trivial? Say outdeg(O^n)=1. • for($u = O^n$; $u == C_{prev}(C_{next}(u))$; $u = C_{next}(u)$); Unfortunately, the path might be exponentially long. $C_{next}(u)$ $C_{prev}(v)$ $C_{prev}(v)$

Lemke-Howson algorithm (1964) Preliminaries: [following discussion in Ch 2] Given: matrices R,C. • For simplicity, convert to symmetric game (A,A^T) : $A = \begin{bmatrix} 0 & R \\ C^T & 0 \end{bmatrix}$ Claim: If ([x,y],[x,y]) is a symmetric equilib in (A,A^T) , then (x/X,y/Y) is an equilib in (R,C). Use $X = \sum_i x_i, Y = \sum_i y_i$ Pf: Each player getting payoff $x^TRy + y^TC^Tx$ with no incentive to deviate.

Lemke-Howson algorithm (1964) Given nxn symmetric game A, find symm equil. Consider the 2n linear constraints on n vars: • $A_i z \le 1$ for all i. $(A_i x \le 1/Z \text{ where } x_i = z_i/Z)$ • $z_j \ge 0$ for all j. $z = (z_1, z_2, ..., z_n)$ If not zero: Strategy i is "represented" if $A_i z = 1$ or $z_i = 0$ (or both) What if all strategies represented? • Either z = (0, ..., 0) or (x, x) is a symmetric Nash.

Lemke-Howson algorithm (1964)

Alg: start at (0,...,0), move along edge. (Relax one of z_j =0 and move until hit some A_iz =1)

- If i=j, then all strategies represented!
- · Else i is represented twice.

In general, take strategy represented twice and relax constraint you didn't just hit.

Claim: can't cycle or reach (0,...,0).

End is a Nash equilibrium.