
1

01/24/13

More on Nash equilibria: concepts,

complexity, and algorithms

Avrim Blum

Your guide:

CMU 15-896 Algorithms, Games, & Networks Spring 2013

[Readings: Ch. 2.1-2.4 of AGT book]

One more interesting game

“Ultimatum game”:

• Two players “Splitter” and “Chooser”

• 3rd party puts $10 on table.

• Splitter gets to decide how to split
between himself and Chooser.

• Chooser can accept or reject.

• If reject, money is burned.

One more interesting game

“Ultimatum game”: E.g., with $4

 (1,3) (2,2) (3,1)

 (0,0) (2,2) (3,1)

 (0,0) (0,0) (3,1)

1

2

3

1 2 3

Splitter: how much
to offer chooser

Chooser:
how

much to
accept

Stackelberg leader strategies

Strategy such that if you announce it and
opponent best-responds to you, you are
best off.

 (1,3) (2,2) (3,1)

 (0,0) (2,2) (3,1)

 (0,0) (0,0) (3,1)

1

2

3

1 2 3

Splitter: how much
to offer chooser

Chooser:
how

much to
accept

Stackelberg leader strategies

Strategy such that if you announce it and
opponent best-responds to you, you are
best off.

Need not be a Nash equilibrium.

 (3,3) (6,1)

(2,0) (4,1)

Price high

Price low

Compete Leave

Stackelberg leader strategies

Can solve efficiently. Say we’re row player:

• For each column j, solve for p to maximize
our expected gain s.t. j is best-response.

• Choose best.

 (3,3) (6,1)

(2,0) (4,1)

Price high

Price low

Compete Leave

2

Hardness of computing Nash equilibria

Looking at 2-player n-action games.

2 types of results:

• NP-hardness for NE with special properties
[Gilboa-Zemel] [Conitzer-Sandholm]

– Is there one with payoff at least v for row?

– Is there one using row #1?

– Is there more than one?

– …

• PPAD-hardness for finding any NE.
 [Chen-Deng][Daskalakis-Goldberg-Papadimitriou]

Hardness of computing Nash equilibria

NP-hardness for NE with special properties

Basic idea:

• Given 3-SAT formula F, create a game with
one row for each literal, variable, & clause.

• Also a default attractor action f. C = RT.

• Somehow set things up so that except for
(f,f), all NE must correspond to satisfying
assignments.

Hardness of computing Nash equilibria

NP-hardness for NE special properties

[x’ ¼ –n. These negative values for matches]

• (f,f) is default equilibrium.

• Unif over literals of satisfying assn are NE. Also mixture.

What about just finding some NE?

This is “PPAD” hard.

What’s that?

What about just finding some NE?
Consider the following problem:
• Given two circuits Cnext and Cprev, each with n-bit

input, n-bit output.

• View as defining directed graph G:
u!v iff Cnext(u)=v and Cprev(v)=u.

Cnext

u

Cnext(u)

Cprev

v

Cprev(v)

 (indeg ·1, outdeg ·1)

What about just finding some NE?
Consider the following problem:
• Given two circuits Cnext and Cprev, each with n-bit

input, n-bit output.

• View as defining directed graph G:
u!v iff Cnext(u)=v and Cprev(v)=u. (indeg ·1, outdeg ·1)

• Say v “unbalanced” if indeg(v)  outdeg(v).

• If 0n is unbalanced, then find another
unbalanced node. (must exist)

This is PPAD
“End Of The Line”

3

What about just finding some NE?
Why isn’t this problem trivial?
• for(u = 0n; u == Cprev(Cnext(u)); u = Cnext(u));

Unfortunately, the path might be exponentially long.

Cnext

u

Cnext(u)

Cprev

v

Cprev(v)

 Say outdeg(0n)=1.

What about just finding some NE?

Not going to give proof that Nash is
PPAD-hard.

Instead, give algorithm to show why
Nash is in PPAD.

Lemke-Howson algorithm (1964)

Given: matrices R,C.

• For simplicity, convert to
symmetric game (A,AT):

0 R
CT 0

A =

Claim: If ([x,y],[x,y]) is a symmetric
equilib in (A,AT), then (x/X,y/Y) is an
equilib in (R,C).

Preliminaries: [following discussion in Ch 2]

Use X = i xi, Y = i yi

Pf: Each player getting payoff xTRy + yTCTx
with no incentive to deviate.

Lemke-Howson algorithm (1964)
Given nxn symmetric game A, find symm equil.

Consider the 2n linear constraints on n vars:

• Aiz · 1 for all i.

• zj ¸ 0 for all j.

Assume A is full rank, all Aij non-neg.

• Implies have a bounded polytope.

• And all vertices have n tight
constraints (at equality).

Alg will start at the origin (a vertex)
and move along edges to a NE.

z = (z1, z2, …, zn)

(Aix · 1/Z where xi = zi/Z)

If not
zero…

Lemke-Howson algorithm (1964)
Given nxn symmetric game A, find symm equil.

Consider the 2n linear constraints on n vars:

• Aiz · 1 for all i.

• zj ¸ 0 for all j.

Strategy i is “represented” if Aiz=1 or zi=0 (or both)

What if all strategies represented?

• Either z=(0,…,0) or (x,x) is a
symmetric Nash.

z = (z1, z2, …, zn)

(Aix · 1/Z where xi = zi/Z)

If not
zero…

Lemke-Howson algorithm (1964)

• If i=j, then all strategies represented!

• Else i is represented twice.

Strategy i is “represented” if Aiz=1 or zi=0 (or both)

What if all strategies represented?

• Either z=(0,…,0) or (x,x) is a
symmetric Nash.

Alg: start at (0,…,0), move along edge.
(Relax one of zj=0 and move until hit some Aiz=1)

(0,…,0)

4

Lemke-Howson algorithm (1964)

• If i=j, then all strategies represented!

• Else i is represented twice.

In general, take strategy represented twice
and relax constraint you didn’t just hit.

Claim: can’t cycle or reach (0,…,0).

End is a Nash equilibrium.

Alg: start at (0,…,0), move along edge.
(Relax one of zj=0 and move until hit some Aiz=1)

(0,…,0)

NE

