
1 

01/24/13 

More on Nash equilibria: concepts, 

complexity, and algorithms 

Avrim Blum 

Your guide: 

CMU 15-896    Algorithms, Games, & Networks     Spring 2013 

[Readings: Ch. 2.1-2.4 of AGT book] 

One more interesting game 

“Ultimatum game”: 

• Two players “Splitter” and “Chooser” 

• 3rd party puts $10 on table. 

• Splitter gets to decide how to split 
between himself and Chooser. 

• Chooser can accept or reject. 

• If reject, money is burned. 

One more interesting game 

“Ultimatum game”:  E.g., with $4 
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Splitter: how much 
to offer chooser 

Chooser: 
how 

much to 
accept 

Stackelberg leader strategies 

Strategy such that if you announce it and 
opponent best-responds to you, you are 
best off. 
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Splitter: how much 
to offer chooser 

Chooser: 
how 

much to 
accept 

Stackelberg leader strategies 

Strategy such that if you announce it and 
opponent best-responds to you, you are 
best off. 

Need not be a Nash equilibrium. 
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Price low 

Compete  Leave 

Stackelberg leader strategies 

Can solve efficiently.  Say we’re row player: 

• For each column j, solve for p to maximize 
our expected gain s.t. j is best-response. 

• Choose best. 
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Hardness of computing Nash equilibria 

Looking at 2-player n-action games. 

2 types of results: 

• NP-hardness for NE with special properties 
[Gilboa-Zemel] [Conitzer-Sandholm] 

– Is there one with payoff at least v for row? 

– Is there one using row #1? 

– Is there more than one? 

– … 

• PPAD-hardness for finding any NE.  
   [Chen-Deng][Daskalakis-Goldberg-Papadimitriou] 

Hardness of computing Nash equilibria 

NP-hardness for NE with special properties 

Basic idea: 

• Given 3-SAT formula F, create a game with 
one row for each literal, variable, & clause. 
 

• Also a default attractor action f.  C = RT. 
 

• Somehow set things up so that except for 
(f,f), all NE must correspond to satisfying 
assignments. 

Hardness of computing Nash equilibria 

NP-hardness for NE special properties 

 

[x’ ¼ –n.  These negative values for matches] 

• (f,f) is default equilibrium. 

• Unif over literals of satisfying assn are NE. Also mixture. 

What about just finding some NE? 

This is “PPAD” hard. 

What’s that? 

What about just finding some NE? 
Consider the following problem: 
• Given two circuits Cnext and Cprev, each with n-bit 

input, n-bit output. 

• View as defining directed graph G:                     
u!v iff Cnext(u)=v and Cprev(v)=u. 
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  (indeg ·1, outdeg ·1) 

What about just finding some NE? 
Consider the following problem: 
• Given two circuits Cnext and Cprev, each with n-bit 

input, n-bit output. 

• View as defining directed graph G:                     
u!v iff Cnext(u)=v and Cprev(v)=u.   (indeg ·1, outdeg ·1) 

• Say v “unbalanced” if indeg(v)  outdeg(v). 

• If 0n is unbalanced, then find another 
unbalanced node.   (must exist) 

This is PPAD 
“End Of The Line” 



3 

What about just finding some NE? 
Why isn’t this problem trivial? 
• for(u = 0n; u == Cprev(Cnext(u)); u = Cnext(u)); 

 

Unfortunately, the path might be exponentially long. 
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  Say outdeg(0n)=1. 

What about just finding some NE? 

Not going to give proof that Nash is 
PPAD-hard.   

 

Instead, give algorithm to show why 
Nash is in PPAD. 

Lemke-Howson algorithm (1964) 

Given: matrices R,C. 

• For simplicity, convert to 
symmetric game (A,AT):  

0   R 
CT  0 

A = 

Claim: If ([x,y],[x,y]) is a symmetric 
equilib in (A,AT), then (x/X,y/Y) is an 
equilib in (R,C). 

Preliminaries:  [following discussion in Ch 2]   

Use X = i xi, Y = i yi 
 

Pf: Each player getting payoff xTRy + yTCTx 
with no incentive to deviate. 

Lemke-Howson algorithm (1964) 
Given nxn symmetric game A, find symm equil. 

Consider the 2n linear constraints on n vars: 

• Aiz · 1 for all i. 

• zj ¸ 0 for all j. 

Assume A is full rank, all Aij non-neg. 

• Implies have a bounded polytope. 

• And all vertices have n tight      
constraints (at equality). 

Alg will start at the origin (a vertex)           
and move along edges to a NE. 

z = (z1, z2, …, zn) 

(Aix · 1/Z  where xi = zi/Z) 

If not 
zero… 

Lemke-Howson algorithm (1964) 
Given nxn symmetric game A, find symm equil. 

Consider the 2n linear constraints on n vars: 

• Aiz · 1 for all i. 

• zj ¸ 0 for all j. 

Strategy i is “represented” if Aiz=1 or zi=0 (or both) 

What if all strategies represented? 

• Either z=(0,…,0) or (x,x) is a              
symmetric Nash. 

z = (z1, z2, …, zn) 

(Aix · 1/Z  where xi = zi/Z) 

If not 
zero… 

Lemke-Howson algorithm (1964) 

 

• If i=j, then all strategies represented!  

• Else i is represented twice. 

Strategy i is “represented” if Aiz=1 or zi=0 (or both) 

What if all strategies represented? 

• Either z=(0,…,0) or (x,x) is a              
symmetric Nash. 

Alg: start at (0,…,0), move along edge.        
(Relax one of zj=0 and move until hit some Aiz=1) 

(0,…,0) 
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Lemke-Howson algorithm (1964) 

 

• If i=j, then all strategies represented!  

• Else i is represented twice. 

In general, take strategy represented twice 
and relax constraint you didn’t just hit. 

Claim: can’t cycle or reach (0,…,0). 
 

End is a Nash equilibrium. 

Alg: start at (0,…,0), move along edge.        
(Relax one of zj=0 and move until hit some Aiz=1) 

(0,…,0) 

NE 


