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Bandit algorithms, internal & swap 

regret, and correlated equilibria 

Avrim Blum 

Your guide: 

CMU 15-896    Algorithms, Games, & Networks     Spring 2013 

[Readings: Ch. 4.4-4.6 of AGT book] 

“No-regret” algorithms for repeated decisions: 

 Algorithm has N options.  World chooses cost vector.  
Can view as matrix like this (maybe infinite # cols) 

 

 

 

 At each time step, algorithm picks row, life picks column. 

 Alg pays cost (or gets benefit) for action chosen. 

 Alg gets column as feedback (or just its own 
cost/benefit in the “bandit” model). 

 Goal: do nearly as well as best fixed row in hindsight. 
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 Guarantee: E[cost] · OPT + 2(OPT¢log n)1/2 

Since OPT · T, this is at most OPT + 2(Tlog n)1/2. 
 

So, regret/time step · 2(Tlog n)1/2/T ! 0. 

[ACFS02]: applying RWM to bandit setting 

 What if only get your own cost/benefit as feedback? 

 

 

 

 Use of RWM as subroutine to get algorithm with 
cumulative regret O( (TN log N)1/2 ).   

[average regret O( ((N log N)/T)1/2 ).] 

 

 Will do a somewhat weaker version of their analysis 
(same algorithm but not as tight a bound). 

 

 For fun, talk about it in the context of online pricing… 

Online pricing 
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world cup). 

• For t=1,2,…T 

– Seller sets price pt 

– Buyer arrives with valuation vt 

– If vt ¸ pt, buyer purchases and pays pt, else doesn’t. 

– Repeat. 

• Assume all valuations · h. 

$2 

• Goal: do nearly as well as best fixed 
price in hindsight. 

View each possible 
price as a different 

row/expert 

• If vt revealed, run RWM. E[gain] ¸ OPT(1-²) - O(²-1 h log n). 

Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-°)pt + ° unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

1. RWM believes gain is: pt ¢ ĝt  =  pi
t(gi

t/qi
t)  ´ gt

RWM 

3. Actual gain is: gi
t  = gt

RWM (qi
t/pi

t) ¸ gt
RWM(1-°) 

2. t gt
RWM ¸        (1-²) - O(²-1 nh/° log n) OPT  

4. E[      ] ¸ OPT.  OPT                           Because E[ĝj
t] = (1- qj

t)0 + qj
t(gj

t/qj
t) = gj

t , 
so E[maxj[t ĝj

t]] ¸ maxj [ E[t ĝj
t] ]  = OPT. 

· nh/° 

[Auer,Cesa-Bianchi,Freund,Schapire] 
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Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-°)pt + ° unif 
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Conclusion (° = ²):   
  E[Exp3] ¸ OPT(1-²)2 - O(²-2 nh log(n))  

[Auer,Cesa-Bianchi,Freund,Schapire] 

· nh/° 

Balancing would give O((OPT nh log n)2/3) in bound because of ²-2.  
But can reduce to ²-1 and O((OPT nh log n)1/2) more care in analysis.  

Summary 
Algorithms for online decision-making with 
strong guarantees on performance compared 
to best fixed choice. 

• Application: play repeated game against 
adversary.  Perform nearly as well as fixed 
strategy in hindsight.  

Can apply even with very limited feedback. 
• Application: which way to drive to work, with 

only feedback about your own paths; online 
pricing, even if only have buy/no buy feedback. 

 
 

Internal/Swap Regret  
and 

 Correlated Equilibria   

What if all players minimize regret? 
 In zero-sum games, empirical frequencies quickly 

approaches minimax optimal. 

 In general-sum games, does behavior quickly (or 
at all) approach a Nash equilibrium?   

 After all, a Nash Eq is exactly a set of 
distributions that are no-regret wrt each 
other.  So if they converge at all, they must 
converge to a Nash equil. 

 Well, unfortunately, no.   

A bad example for general-sum games 
• Augmented Shapley game from [Zinkevich04]: 

– First 3 rows/cols are Shapley game (rock / paper / 
scissors but if both do same action then both lose). 

– 4th action “play foosball” has slight negative if other 
player is still doing r/p/s but positive if other player 
does 4th action too. 

RWM will cycle among first 3 and have no regret, but do 
worse than only Nash Equilibrium of both playing 
foosball. 

 
• We didn’t really expect this to work given how 

hard NE can be to find… 

A bad example for general-sum games 
• [Balcan-Constantin-Mehta12]: 

– Failure to converge even in Rank-1 games (games 
where R+C has rank 1). 

– Interesting because one can find equilibria efficiently 
in such games. 
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What can we say? 

If algorithms minimize “internal” or “swap” regret, 
then empirical distribution of play approaches 
correlated equilibrium. 

 Foster & Vohra, Hart & Mas-Colell,… 

 Though doesn’t imply play is stabilizing. 

What are internal/swap regret 
and correlated equilibria? 

More general forms of regret 
1. “best expert” or “external” regret: 

– Given n strategies.  Compete with best of them in 
hindsight. 

2. “sleeping expert” or “regret with time-intervals”: 
– Given n strategies, k properties.  Let Si be set of days 

satisfying property i (might overlap). Want to 
simultaneously achieve low regret over each Si. 

3. “internal” or “swap” regret:  like (2), except that 
Si = set of days in which we chose strategy i. 

Internal/swap-regret 
• E.g., each day we pick one stock to buy 

shares in. 
– Don’t want to have regret of the form “every 

time I bought IBM, I should have bought 
Microsoft instead”. 

• Formally, swap regret is wrt optimal 
function f:{1,…,n}!{1,…,n} such that every 
time you played action j, it plays f(j). 

Weird… why care? 
“Correlated equilibrium” 
• Distribution over entries in matrix, such that if a 

trusted party chooses one at random and tells 
you your part, you have no incentive to deviate. 

• E.g., Shapley game. 
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In general-sum games, if all players have low swap-
regret, then empirical distribution of play is apx 
correlated equilibrium.  

-1,-1 

-1,-1 

-1,-1 

Connection 
• If all parties run a low swap regret 

algorithm, then empirical distribution of 
play is an apx correlated equilibrium. 

– Correlator chooses random time t 2 {1,2,…,T}.  
Tells each player to play the action j they 
played in time t (but does not reveal value of t). 

– Expected incentive to deviate:jPr(j)(Regret|j) 
= swap-regret of algorithm 

– So, this suggests correlated equilibria may be 
natural things to see in multi-agent systems 
where individuals are optimizing for themselves 

Correlated vs Coarse-correlated Eq 

“Correlated equilibrium” 
• You have no incentive to deviate, even after 

seeing what the advice is. 

“Coarse-Correlated equilibrium” 
• If only choice is to see and follow, or not to see 

at all, would prefer the former. 

In both cases: a distribution over entries in the 
matrix.  Think of a third party choosing from this 
distr and telling you your part as “advice”. 

Low external-regret ) apx coarse correlated equilib. 
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Internal/swap-regret, contd 
Algorithms for achieving low regret of this 

form: 
– Foster & Vohra, Hart & Mas-Colell, Fudenberg 

& Levine. 

– Will present method of [BM05] showing how to 
convert any “best expert” algorithm into one 
achieving low swap regret. 

– Unfortunately, #steps to achieve low swap 
regret is O(n log n) rather than O(log n). 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 
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– Allows us to view pj as prob we play 
action j, or as prob we play alg Aj. 

p2c 

– Give Aj feedback of pjc. 

– Aj guarantees t (pj
tct)¢qj

t · mini t pj
tci

t + [regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 
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– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 

More on Correlated Equilib 

• Variables are pij.  

• Constraints for each row i. 

– For all i’,  j (pij/pi) Rij ¸ j (pij/pi) Ri’j
 

– Make linear by multiplying LHS,RHS by pi. 
• Constraints for each column j. 

– Similarly for column player. 

Can solve for them using linear programming. 

• This is for 2-player games.  In m-player games it’s 
trickier but can use Ellipsoid alg. 

• Or, just run a swap-regret-minimizing alg for each 
player to get an ²-CE. 

 p11  p12  p13 
p21  p22  p23 

p31  p32  p33 


