CMU 15-896 Algorithms, Games, & Networks ~ Spring 2013

01/22/13
Bandit algorithms, internal & swap
regret, and correlated equilibria

Your guide:

Avrim Blum

[Readings: Ch. 4.4-4.6 of AGT book]

RWM

World - life - fate

(1-sc?)(1-ec,)1
(1-sc,2)(1-ec,)1
(1-ec5?)(1-ec5h)1

. o1

scaling
So costs
1 in [0,1]
(1-ec,)(1-ec,H1

c! c?
Guarantee: E[cost] < OPT + 2(OPT-log n)"/2

Since OPT < T, this is at most OPT + 2(Tlog n)\/2.
So, regret/time step < 2(Tlog n)¥?/T — O.

Online pricing
+ Say you are selling lemonade (or a cool new software tool, or

bottles of water at the world cup).
View each possible

* Fort=12,.T price as a different
- Seller sets price p? row/expert

- Buyer arrives with valuation vt
- If vt > p', buyer purchases and pays p', else doesn't.
- Repeat.

+ Assume all valuations < h. 11

9 pleR
+ Goal: do nearly as well as beg{li® "_05__3_
F 0

price in hindsight. } S

- If v revealed, run RWM. E[gain] > OPT(1-¢) - O(e! h log n).

Recap

"No-regret” algorithms for repeated decisions:

¢ Algorithm has N options. World chooses cost vector.
Can view as matrix like this (maybe infinite # cols)

World - life - fate

Algorithm

¢ At each time step, algorithm picks row, life picks column.
= Alg pays cost (or gets benefit) for action chosen.

= Alg gets column as feedback (or just its own
cost/benefit in the "bandit" model).

= Goal: do nearly as well as best fixed row in hindsight.

[ACFS02]: applying RWM to bandit setting

¢ What if only get your own cost/benefit as feedback?

¢ Use of RWM as subroutine to get algorithm with
cumulative regret O((TN log N)¥/2).

[average regret O(((N log N)/T)2).]

+ Will do a somewhat weaker version of their analysis
(same algorithm but not as tight a bound).

* For fun, talk about it in the context of online pricing...

Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp?)
[Auer Cesa-Bianchi Freund,Schapire]

Distrib p*

Gain vector gt RWM

= (1-9)pt + 1 — n=
q= e —~ #experts
§'=(0...0, gi'/q',

1. RWM believes gain is: p* - §* = p(g'/qi") = g'awm

2., g'rwm = OPT (1-€) - O(e! nh/~ log n)

3. Actual gain is: gi" = g'rwm (/i) > g'ewm(1-7)

4. E[OP;I;] > OPT. Because E[§;']= (1- q;")0 + q;(g;'/q;") = g;' .
so E[max;[%, §;'1] > max;[E[%, §;']] = OPT.

Multi-armed bandit problem

Exponential Weights for Exploration and Exploitation (exp3)
[Auer Cesa-Bianchi,Freund,Schapire]

Distrib p*

n=
#experts

Conclusion (7 = ¢€):
E[Exp3] > OPT(1-¢)? - O(e2 nh log(n))

Balancing would give O((OPT nh log n)?/3) in bound because of €2.
But can reduce to ¢! and O((OPT nh log n)/2) more care in analysis.

Internal/Swap Regret
and

Correlated Equilibria

A bad example for general-sum games

+ Augmented Shapley game from [ZinkevichO4]:

- First 3 rows/cols are Shapley game (rock / paper /
scissors but if both do same action then both lose).

- 4t action "play foosball” has slight negative if other
player is still doing r/p/s but positive if other player
does 4*h action too.

RWM will cycle among first 3 and have no regret, but do

worse than only Nash Equilibrium of both playing

foosball.

Summary

Application: play repeated game against
adversary. Perform nearly as well as fixed
strategy in hindsight.

Application: which way to drive to work, with
only feedback about your own paths; online
pricing, even if only have buy/no buy feedback.

What if all players minimize regret?

¢ In zero-sum games, empirical frequencies quickly
approaches minimax optimal.

+ In general-sum games, does behavior quickly (or
at all) approach a Nash equilibrium?

*
if they converge at all,

+ Well, unfortunately, no.

A bad example for general-sum games
+ [Balcan-Constantin-Mehtal2]:

can

_/

Figure 4. ¢;s of symmetric Shapley game with @ 10.b6=1

What canwe say?

If algorithms minimize “internal” or “swap"” regret,
then empirical distribution of play approaches
equilibrium.
= Foster & Vohra, Hart & Mas-Colell,...
= Though doesn't imply play is stabilizing.

What are internal/swap regret
and correlated equilibria?

Internal/swap-regret

- E.g., each day we pick one stock to buy
shares in.

Formally, swap regret is wrt optimal
function f:{1,..,n}—{1,..,n} such that every
time you played action j, it plays f(j).

Connection

+ If all parties run a low swap regret
algorithm, then empirical distribution of
play is an apx correlated equilibrium.

- Correlator chooses random time t € {1,2,...,T}.
Tells each player to play the action j they
played in time t (but does not reveal value of t).
Expected incentive to deviate:X;Pr(j)(Regret|j)
= swap-regret of algorithm
So, this suggests correlated equilibria may be
natural things to see in multi-agent systems
where individuals are optimizing for themselves

More general forms of regret

1. “best expert” or "external” regret:
- Given nstrategies. Compete with best of them in
hindsight.
2. “sleeping expert” or "regret with time-intervals":

- Given nstrategies, k properties. Let S; be set of days
satisfying property i (might overlap). Want to
simultaneously achieve low regret over each S;.

3. ‘internal” or “swap” regret: like (2), except that
S; = set of days in which we chose strategy i.

Weird... why care?

Distribution over entries in matrix, such that if a
trusted party chooses one at random and tells
you your part, you have no incentive to deviate.

E.g., Shapley game.

In general-sum games, if all players have low swap-
regret, then empirical distribution of play is apx
correlated equilibrium.

Correlated vs Coarse-correlated E

In both cases: a distribution over entries in the
matrix. Think of a third party choosing from this
distr and telling you your part as “advice".

You have no incentive to deviate, even after
seeing what the advice is.

If only choice is to see and follow, or not to see
at all, would prefer the former.

Low external-regret = apx coarse correlated equilib.

Internal/swap-regret, contd

Algorithms for achieving low regret of this
form:
- Foster & Vohra, Hart & Mas-Colell, Fudenberg
& Levine.
Will present method of [BMO5] showing how to
convert any “best expert” algorithm into one
achieving low swap regret.

Unfortunately, #steps to achieve low swap
regret is O(n log n) rather than O(log n).

Can convert any “best expert” algorithm A into one
achieving low swap regret. Idea:

- Instantiate one copy A; responsible for expected
regret over fimes we pray J

Play p = pQ

Alg [P
paC
T 9n

'\ﬁ'\g\"\"\"’

Cost vector ¢

- Sumover j, get:

2 P'QTCT < Xymin; Xy pj'ci’ + nlregret term]

- Writeas: 24 pi(q™-c") < min; Z; py'ci’ + [regret term]

Can convert any “best expert” algorithm A into one
achieving low swap regret. Idea:

Instantiate one copy A, responsible for expected
regret over times we pllay J

Play p = pQ

Alg

Cost vector ¢

Allows us fo view p; as prob we play

action j, or as prob we play alg A;.

Give A feedback of pjc.

Aj guarantees X (p;'c)-q;" < min; X, p;'c;" + [regret term]

Write as: %4 pi(q-c") < min; Z; pjic;’ + [regret term]

More on Correlated Equilib

Can solve for them using linear programming.

* Variables are p;;.
+ Constraints for each row i.

= Forall i, > (piy/pi) Ry = 2 (piy/pi) Ry

ij =~

- Make linear by multiplying LHS ,RHS by p;.

+ Constraints for each column j.

- Similarly for column player.

* This is for 2-player games. In m-player games it's

trickier but can use Ellipsoid alg.

+ Or, just run a swap-regret-minimizing alg for each

player to get an e-CE.

