

CMU 15-896

KIDNEY EXCHANGE: INCENTIVES

TEACHERS:
AVRIM BLUM
ARIEL PROCACCIA (THIS TIME)

INCENTIVES

- A few years ago kidney exchanges were carried out by individual hospitals
- Today there are nationally organized exchanges; participating hospitals have little other interaction
- It was observed that hospitals match easy-tomatch pairs internally, and enroll only hard-tomatch pairs into larger exchanges
- Goal: incentivize hospitals to enroll all their pairs

THE STRATEGIC MODEL

- Undirected graph (only pairwise matches!)
 - Vertices = donor-patient pairs
 - $_{\circ}$ Edges = compatibility
 - Each player controls subset of vertices
- Mechanism receives a graph and returns a matching
- Utility of player = # its matched vertices
- Target: # matched vertices
- Strategy: subset of revealed vertices
 - But edges are public knowledge
- Mechanism is strategyproof (SP) if it is a dominant strategy to reveal all vertices

OPT IS MANIPULABLE

OPT IS MANIPULABLE

APPROXIMATING SW

- Theorem [Ashlagi et al. 2010]: No deterministic SP mechanism can give a $2 - \epsilon$ approximation
- **Proof:** We just proved it!
- Theorem [Ashlagi et al. 2010]: No randomized SP mechanism can give an $8/7 - \epsilon$ approximation
- **Proof:** Homework 4 q4
 - Huge bonus: improve the bound!

SP MECHANISM: TAKE 1

- Assume two players
- The MATCH $\{\{1\},\{2\}\}\}$ mechanism:
 - Consider matchings that maximize the number of "internal edges"
 - Among these return a matching with max cardinality

ANOTHER EXAMPLE

SOME OBSERVATIONS

- Theorem (special case): $MATCH_{\{\{1\},\{2\}\}}$ is strategyproof for two players
- We prove this on the board
- It gives a 2-approximation
 - Cannot add more edges to matching
 - For each edge in optimal matching, one of the two vertices is in mechanism's matching
- What about more than two players?

THE CASE OF 3 PLAYERS

SP MECHANISM: TAKE 2

- Let $\Pi = (\Pi_1, \Pi_2)$ be a bipartition of the players
- The MATCH $_{\Pi}$ mechanism:
 - Consider matchings that maximize the number of "internal edges" and do not have any edges between different players on the same side of the partition
 - Among these return a matching with max cardinality (need tie breaking)

EUREKA?

- Theorem [Ashlagi et al. 2010]: Match_{Π} is strategyproof for any number of players and any partition Π
- For n=2 Match $_{\{\{1\},\{2\}\}}$ guarantees a 2-approx
- Vote: approximation guarantees given by MATCH_{Π} for n=3 and $\Pi=\{\{1\},\{2,3\}\}$

THE MECHANISM

- The MIX-AND-MATCH mechanism:
 - Mix: choose a random partition Π
 - Match: Execute MATCH $_{\Pi}$
- Theorem [Ashlagi et al. 2010]: MIX-AND-MATCH is strategyproof and guarantees a 2-approximation
- We prove the theorem on the board

