CMU 15-896 KIDNEY ExCHANGE: OPTIMIZATION

TEACHERS:
AVRIM BLUM
ARIEL PROCACCIA (THIS TIME)

KIDNEY TRANSPLANTS

- Kidney failure can be fatal
- Options: dialysis, kidney transplant
- In 2010:
- 4,654 people died waiting for a kidney transplant.
- 34,418 people were added to the national waiting list
- 10,600 people left the list by receiving a deceased donor kidney
- The waiting list had 89,808 people, and the median waiting time is between $2-5$ years, depending on blood type

KIDNEY EXCHANGE

- Best option: live donor
- In 2010 there were 5467 live donations in the US
- Most patients are incompatible with potential donors
- Kidney exchange $=$ patients
 swap incompatible donors to obtain a compatible donor

MORE GENERALLY...

- Directed graph $G=(V, E)$
- Each $v \in V$ is a donor-patient pair
- Edge $(u, v) \in E$ if donor of u is compatible with patient of v

- Exchanges along cycles

CYCLE COVER

- Maximum cover by cycles
- If cycle length is unrestricted, problem is in P [homework 4 q 3]
- Cycle cap is a medical necessity
- Theorem [Abraham et al. 2007]: Given $G, L \geq 3$, computing a max cycle cover with cycles of length $\leq L$ is NP-hard
- Trivial for $L=2$

PROOF BY ILLUSTRATION

- Reduction from 3D-MATching: Given disjoint sets A, B, C of size q and triples $T \subseteq A \times B \times C$, is there a disjoint $M \subseteq T$ of size q ?
- For each $x \in A \cup B \cup C$ construct v_{x}
- For each triple (a, b, c) construct gadget below
- 3D matching \Leftrightarrow perfect cycle cover

Carnegie Mellon University 6

CYCLE COVERS IN PRACTICE

- In practice optimal cycle covers are computed on a weekly basis at CMU

[Abraham et al., 2007]

Are LONG CYCLES NEEDED?

- Model of [Roth, Sonmez, and Unver 2007]
- Four blood types: O, A, B, AB
- Donor is compatible with patient if latter has "more letters" (O is empty set)
- Example: A can donate to A or AB, but not to B or O
- Assumption: There are no tissue-type incompatibilities between pairs

3-CYCLES CAN HELP

3-CYCLES CAN HELP

Carnegie Mellon University 10

CLASSIFICATION OF PAIRS

- We classify donor-patient pairs into four types:
- Self-Demanded: $X-X$
- Reciprocally demanded: A-B and B-A
- Over-demanded: $X-Y$ that are blood-type compatible
- Under-demanded: $X-Y$ that are blood-type incompatible
- Assumption: There is an endless supply of under-demanded pairs
- Next two slides show optimal allocations for 2cycles and 3-cycles

Reciprocally demanded

Self demanded

3-CYCLES CAN HELP, REVISITED

- Why do 3-cycles help?

1. Odd number of pairs in a self-demanded set
2. Each $\mathrm{AB}-\mathrm{O}$ pair can form a 3 -cycle with $\mathrm{O}-\mathrm{A}, \mathrm{A}-\mathrm{AB}$ or O-B, B-AB
3. Remaining $\mathrm{A}-\mathrm{B}$ or $\mathrm{B}-\mathrm{A}$ pairs can be matched in 3cycles, e.g., (A-B, B-O,O-A)

- Assume that we draw each pair from product dist. over blood types; each type has constant probability
- Vote: Which item gives $\Omega(n)$ extra matches?

Self demanded

A RANDOM GRAPH MODEL

- Each blood type X has probability μ_{X}
- Draw blood types for patient and donor
- Blood-type compatible donor and patient are tissue-type incompatible with probability $\gamma>0$
- If donor-patient pair is internally compatible, remove them
- Otherwise, randomly generate edges to blood-type compatible pairs
- Theorem [Ashlagi and Roth 2011]: In large random graphs, w.h.p. ヨopt allocation with cycles of length ≤ 3

InTRODUCING: CHAINS

- Altruistic
donors can
initiate a chain
- Long chains can have a huge impact on \#matches

Chain of length 60, from NYT

Carnegie Mellon University 16

CHAINS IN REAL EXCHANGES

[Dickerson et al., 2012a]

CHAINS IN LARGE EXCHANGES

- Theorem [Ashlagi et al. 2012, Dickerson et al., 2012a]: In large random graphs, w.h.p. ヨopt allocation with cycles of length ≤ 3 and chains of length ≤ 3

[Dickerson et al., 2012a]

INTRODUCING: CROSSMATCHES

- Mixing cells and serum to determine whether patient will reject the kidney
- Adds another level of uncertainty: assume that crossmatch is negative (match possible) with some probability
- Optimization should now favor short cycles and short chains

RESULTS FROM REAL DATA

RESULTS FROM SIMULATIONS

INTRODUCING: DYNAMICS

- Every month new pairs enter the pool, and some pairs leave
- Matching myopically may not be optimal; should we save an AB-O pair for later?
- How can we look into the future?

VERTEX POTENTIALS

- Assign a potential to each donor-patient pair and each altruistic donor according to blood type [Dickerson et al., 2012b]
- In each round, maximize cardinality of matching minus total potential removed
- Optimize potentials using local search

VERTEX POTENTIALS ARE BAD?

- Opt matches $6 \mathrm{k}+4$
- Match pulsing cycles \Rightarrow total at most $4 \mathrm{k}+4$
- Do not match pulsing cycles \Rightarrow
- $\mathrm{P}_{\mathrm{AB}-\mathrm{O}}+\mathrm{P}_{\mathrm{AB}-\mathrm{A}}>2$
- $\mathrm{P}_{\mathrm{A}-\mathrm{A}}+\mathrm{P}_{\mathrm{A}-\mathrm{O}}>2$
- Either

$$
\begin{array}{ll}
\circ & \mathrm{P}_{\mathrm{AB}-\mathrm{O}}+\mathrm{P}_{\mathrm{A}-\mathrm{O}}>2 \\
\circ & \mathrm{P}_{\mathrm{A}-\mathrm{A}}+\mathrm{P}_{\mathrm{AB}-\mathrm{A}}>2
\end{array}
$$

- Do not match k cycles in first stage
- Match $4 \mathrm{k}+4$ overall

Carnegie Mellon University 24

VERTEX POTENTIALS ARE GOOD

