

TEACHERS: AVRIM BLUM ARIEL PROCACCIA (THIS TIME)

KIDNEY TRANSPLANTS

- Kidney failure can be fatal
- Options: dialysis, kidney transplant
- In 2010:
 - \circ 4,654 people died waiting for a kidney transplant.
 - 34,418 people were added to the national waiting list
 - 10,600 people left the list by receiving a deceased donor kidney
 - The waiting list had 89,808 people, and the median waiting time is between 2-5 years, depending on blood type

KIDNEY EXCHANGE

- Best option: live donor
- In 2010 there were 5467 live donations in the US
- Most patients are incompatible with potential donors
- Kidney exchange = patients swap incompatible donors to obtain a compatible donor

More generally...

- Directed graph G = (V, E)
- Each $v \in V$ is a donor-patient pair
- Edge $(u, v) \in E$ if donor of u is compatible with patient of v

• Exchanges along cycles

CYCLE COVER

- Maximum cover by cycles
- If cycle length is unrestricted, problem is in P [homework 4 q3]
- Cycle cap is a medical necessity
- Theorem [Abraham et al. 2007]: Given $G, L \geq 3$, computing a max cycle cover with cycles of length $\leq L$ is NP-hard
- Trivial for L = 2

PROOF BY ILLUSTRATION

- Reduction from 3D-MATCHING: Given disjoint sets A, B, C of size q and triples $T \subseteq A \times B \times C$, is there a disjoint $M \subseteq T$ of size q?
- For each $x \in A \cup B \cup C$ construct v_x
- For each triple (a, b, c) construct gadget below
- 3D matching \Leftrightarrow perfect cycle cover

6

CYCLE COVERS IN PRACTICE

 In practice optimal cycle covers are computed on a weekly basis at CMU

[Abraham et al., 2007]

ARE LONG CYCLES NEEDED?

- Model of [Roth, Sonmez, and Unver 2007]
- Four blood types: O, A, B, AB
- Donor is compatible with patient if latter has "more letters" (O is empty set)
 - Example: A can donate to A or AB, but not to B or O
- Assumption: There are no tissue-type incompatibilities between pairs

3-CYCLES CAN HELP

3-CYCLES CAN HELP

CLASSIFICATION OF PAIRS

- We classify donor-patient pairs into four types:
 - Self-Demanded: X-X
 - Reciprocally demanded: A-B and B-A
 - Over-demanded: *X*-*Y* that are blood-type compatible
 - Under-demanded: *X*-*Y* that are blood-type incompatible
- Assumption: There is an endless supply of under-demanded pairs
- Next two slides show optimal allocations for 2-cycles and 3-cycles

Self demanded

3-CYCLES CAN HELP, REVISITED

- Why do 3-cycles help?
 - 1. Odd number of pairs in a self-demanded set
 - 2. Each AB-O pair can form a 3-cycle with O-A, A-AB or O-B, B-AB
 - 3. Remaining A-B or B-A pairs can be matched in 3cycles, e.g., (A-B, B-O,O-A)
- Assume that we draw each pair from product dist. over blood types; each type has constant probability
- Vote: Which item gives $\Omega(n)$ extra matches?

A RANDOM GRAPH MODEL

- Each blood type X has probability μ_X
- Draw blood types for patient and donor
- Blood-type compatible donor and patient are tissue-type incompatible with probability $\gamma>0$
- If donor-patient pair is internally compatible, remove them
- Otherwise, randomly generate edges to blood-type compatible pairs
- Theorem [Ashlagi and Roth 2011]: In large random graphs, w.h.p. \exists opt allocation with cycles of length ≤ 3

INTRODUCING: CHAINS

- Altruistic donors can initiate a chain
- Long chains

 can have a
 huge impact
 on #matches

Chain of length 60, from NYT

CHAINS IN REAL EXCHANGES

CHAINS IN LARGE EXCHANGES

• Theorem [Ashlagi et al. 2012, Dickerson et al., 2012a]: In large random graphs, w.h.p. \exists opt allocation with cycles of length ≤ 3 and chains of length ≤ 3

INTRODUCING: CROSSMATCHES

- Mixing cells and serum to determine whether patient will reject the kidney
- Adds another level of uncertainty: assume that crossmatch is negative (match possible) with some probability
- Optimization should now favor short cycles and short chains

RESULTS FROM REAL DATA

RESULTS FROM SIMULATIONS

INTRODUCING: DYNAMICS

- Every month new pairs enter the pool, and some pairs leave
- Matching myopically may not be optimal; should we save an AB-O pair for later?
- How can we look into the future?

VERTEX POTENTIALS

- Assign a potential to each donor-patient pair and each altruistic donor according to blood type [Dickerson et al., 2012b]
- In each round, maximize cardinality of matching minus total potential removed
- Optimize potentials using local search

VERTEX POTENTIALS ARE BAD?

- Opt matches 6k+4
- Match pulsing cycles \Rightarrow total at most 4k+4
- Do not match pulsing cycles \Rightarrow
 - $\circ \quad \mathrm{P}_{\mathrm{AB-O}}\mathrm{+}\mathrm{P}_{\mathrm{AB-A}}>2$
 - $\circ \quad \mathrm{P}_{\mathrm{A-A}}{+}\mathrm{P}_{\mathrm{A-O}}>2$
- Either
 - $\circ \quad \mathrm{P}_{\mathrm{AB-O}}{+}\mathrm{P}_{\mathrm{A-O}}>2$
 - $\circ \quad \mathrm{P}_{\mathrm{A-A}} \mathrm{+} \mathrm{P}_{\mathrm{AB-A}} > 2$
- Do not match k cycles in first stage
- Match 4k+4 overall

VERTEX POTENTIALS ARE GOOD

