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KIDNEY TRANSPLANTS

e Kidney failure can be fatal
 Options: dialysis, kidney transplant
e In 2010:

o 4,654 people died waiting for a kidney transplant.
o 34,418 people were added to the national waiting list

o 10,600 people left the list by receiving a deceased
donor kidney

o The waiting list had 89,808 people, and the median
waiting time is between 2-5 years, depending on
blood type
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KIDNEY EXCHANGE

 Best option: live donor

e In 2010 there were 5467 live
donations in the US

 Most patients are
incompatible with potential
donors

 Kidney exchange = patients
swap incompatible donors to
obtain a compatible donor
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MORE GENERALLY...

* Directed graph
G =,E)

e Fachv eV isa
donor-patient pair

e Edge (u,v) € E if
donor of u is

compatible with
patient of v

e LExchanges along cycles
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CYCLE COVER

e Maximum cover by cycles

e If cycle length is unrestricted, problem is
in P |homework 4 3]

 Cycle cap is a medical necessity

 Theorem |Abraham et al. 2007]:
Given G, L = 3, computing a max cycle
cover with cycles of length < L is NP-hard

e Trivial for L = 2
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PROOF BY ILLUSTRATION

 Reduction from 3D-MATCHING: Given disjoint
sets A, B, C of size g and triples T € A X B X C,
is there a disjoint M S T of size g7

e For each x € AU B U C construct v,
 For each triple (a, b, c) construct gadget below

3D matching & perfect cycle cover
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CYCLE COVERS IN PRACTICE

° 4000 . . | T .
¢ In p r aCt ]- C e Our algorithm with restricted cgg;n?:gs%rggg; L_ -;-_4

Our algorithm with no optimality prover &-—i

optimal cycle
COVers are
computed on 2 wol | ;
a weekly basis ¢ ™ |

500 7 .. y
' -0 T
i @,' — _____.---'i'_'_:.'....... i
Tl R R St
W . PP o _'i- i
0 m A g o | I | I
0 2000 4000 6000 8000 10000

Number of patients

|Abraham et al., 2007]

Carnegie Mellon University 7




ARE LONG CYCLES NEEDED?

e Model of |[Roth, Sonmez, and Unver 2007]
 Four blood types: O, A, B, AB

 Donor is compatible with patient if latter
has “more letters” (O is empty set)

o Example: A can donate to A or AB, but not
to B or O

e Assumption: There are no tissue-type
incompatibilities between pairs
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3-CYCLES CAN HELP

A
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3-CYCLES CAN HELP
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CLASSIFICATION OF PAIRS

 We classity donor-patient pairs into four types:
o Self-Demanded: X-X
o Reciprocally demanded: A-B and B-A
o Over-demanded: X-Y that are blood-type compatible

o Under-demanded: X-Y that are blood-type
incompatible

« Assumption: There is an endless supply of
under-demanded pairs

e Next two slides show optimal allocations for 2-
cycles and 3-cycles
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3-CYCLES CAN HELP, REVISITED

e Why do 3-cycles help?
1. Odd number of pairs in a self-demanded set

2. Each AB-O pair can form a 3-cycle with O-A, A-AB
or O-B, B-AB
3. Remaining A-B or B-A pairs can be matched in 3-

cycles, e.g., (A-B, B-O,0-A)

e Assume that we draw each pair from product
dist. over blood types; each type has constant
probability

e Vote: Which item gives Q(n) extra matches?
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A RANDOM GRAPH MODEL

 FEach blood type X has probability uy
 Draw blood types for patient and donor

* Blood-type compatible donor and patient are tissue-type
incompatible with probability y > 0

e If donor-patient pair is internally compatible, remove
them

e Otherwise, randomly generate edges to blood-type
compatible pairs

« Theorem |[Ashlagi and Roth 2011]: In large random
graphs, w.h.p. Jopt allocation with cycles of length < 3
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INTRODUCING: CHAINS
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CHAINS IN REAL EXCHANGES

Optimizing for Maximum Cardinality
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CHAINS IN LARGE EXCHANGES

 Theorem |[Ashlagi et al. 2012, Dickerson et al.,
2012a]: In large random graphs, w.h.p. Jopt allocation
with cycles of length < 3 and chains of length < 3
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INTRODUCING: CROSSMATCHES

e Mixing cells and serum to determine
whether patient will reject the kidney

 Adds another level of uncertainty: assume
that crossmatch is negative (match
possible) with some probability

e Optimization should now favor short
cycles and short chains
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RESULTS FROM REAL DATA
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RESULTS FROM SIMULATIONS

Aggregate number of transplants
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INTRODUCING: DYNAMICS

e Every month new pairs enter the pool, and
some pairs leave

e Matching myopically may not be optimal;
should we save an AB-O pair for later?

e How can we look into the future?
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VERTEX POTENTIALS

 Assign a potential to each donor-patient

pair and each altruistic donor according to
blood type |Dickerson et al., 2012b|

 In each round, maximize cardinality of
matching minus total potential removed

 Optimize potentials using local search

Carnegie Mellon University 23




VERTEX POTENTIALS ARE BAD?

e Opt matches 6k+4

e Match pulsing cycles = total
at most 4k+-4

Do not match pulsing cycles =
o  PapotPapa > 2
o PyatPyo>2
e FEither
o PurgotPaog>2
o PpatPapa > 2

Do not match k cycles in first
stage

e Match 4k-+4 overall
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VERTEX POTENTIALS ARE GOOD
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