CMU 15-896

FAIR DIVISION: COMPLEXITY AND APPROXIMATION

TEACHERS: AVRIM BLUM ARIEL PROCACCIA (THIS TIME)

COMPLEXITY REVISITED

• Robertson-Webb model

•
$$\operatorname{Eval}_i(x, y) = V_i([x, y])$$

• $\operatorname{Cut}_i(x, \alpha) = y \text{ s.t. } V_i([x, y]) = \alpha$

- Even-Paz is proportional and requires $O(n \log n)$ queries
- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol requires Ω(n logn) queries

• We prove the theorem on the board

ÅPPROXIMATE ENVY-FREENESS

- There is no known bounded envy-free (EF) protocol
- Can "efficiently" obtain ϵ -EF: $V_i(A_i) \ge V_i(A_j) - \epsilon$
- Approach: $\epsilon\text{-}\mathrm{EF}$ allocation of indivisible goods
- Setting: m goods, $V_i(S)$ denotes the value of agent $i \in N$ for the bundle S

BOUNDED EF

- Given allocation A, denote $\begin{aligned} e_{ij}(A) &= \max\{0, V_i(A_j) - V_i(A_i)\} \\ e(A) &= \max\{e_{ij}(A) \colon i, j \in N\} \end{aligned}$
- Define the maximum marginal utility $\alpha = \max\{V_i(S \cup \{x\}) - V_i(S): i, S, x\}$
- Theorem [Lipton et al. 2004]: An allocation with $e(A) \leq \alpha$ can be found in polynomial time

PROOF OF THEOREM

- Given allocation A, we have an edge (i, j) in its envy graph if i envies j
- Lemma: Given partial allocation A with envy graph G, can find allocation B with acyclic envy graph H s.t. $e(B) \leq e(A)$

PROOF OF LEMMA

- If G has a cycle C, shift allocations along C to obtain A'; clearly $e(A') \leq e(A)$
- #edges in envy graph of A' decreased:
 - $_{\circ}$ $\,$ Same edges between $N\setminus C$
 - Edges from $N \setminus C$ to C shifted

 - Edges inside C decreased
- Iteratively remove cycles

PROOF OF THEOREM

- Maintain envy $\leq \alpha$ and acyclic graph
- In round 1, allocate good g_1 to arbitrary agent
- g_1, \ldots, g_{k-1} are allocated in acyclic A
- Derive B by allocating g_k to source i
- $e_{ji}(B) \leq e_{ji}(A) + \alpha = \alpha$
- Use lemma to eliminate cycles \blacksquare

BACK TO CAKES

- Agent *i* makes $1/\epsilon$ marks $x_1^i, \dots, x_{1/\epsilon}^i$ such that for every $k, V_i([x_k^i, x_{k+1}^i]) = \epsilon$
- If intervals between consecutive marks are indivisible goods then $\alpha \leq \epsilon$
- Now we can apply the theorem
- Need n/ϵ cut queries and n^2/ϵ eval queries

AN EVEN SIMPLER SOLUTION

- Relies on additive valuations
- Create the "indivisible goods" like before
- Agents choose pieces in a round-robin fashion: 1, ..., n, 1, ..., n, ...
- Each good chosen by agent i is preferred to the next good chosen by agent j
- This may not account for the first good g chosen by j, but $V_i(\{g\}) \leq \epsilon$