CMU 15-896

FAIR DIVISION:
COMPLEXITY AND APPROXIMATION

TEACHERS:
AVRIM BLUM
ARIEL PROCACCIA (THIS TIME)

COMPLEXITY REVISITED

- Robertson-Webb model
- $\operatorname{Eval}_{i}(x, y)=V_{i}([x, y])$
- $\operatorname{Cut}_{i}(x, \alpha)=y$ s.t. $V_{i}([x, y])=\alpha$
- Even-Paz is proportional and requires $0(n \log n)$ queries
- Theorem [Edmonds and Pruhs,

2006]: Any proportional protocol requires $\Omega(n \log n)$ queries

- We prove the theorem on the board

APPROXIMATE ENVY-FREENESS

- There is no known bounded envy-free (EF) protocol
- Can "efficiently" obtain ϵ-EF:

$$
V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)-\epsilon
$$

- Approach: ϵ-EF allocation of indivisible goods
- Setting: m goods, $V_{i}(S)$ denotes the value of agent $i \in N$ for the bundle S

BOUNDED EF

- Given allocation A, denote

$$
\begin{aligned}
& e_{i j}(A)=\max \left\{0, V_{i}\left(A_{j}\right)-V_{i}\left(A_{i}\right)\right\} \\
& e(A)=\max \left\{e_{i j}(A): i, j \in N\right\}
\end{aligned}
$$

- Define the maximum marginal utility

$$
\alpha=\max \left\{V_{i}(S \cup\{x\})-V_{i}(S): i, S, x\right\}
$$

- Theorem [Lipton et al. 2004]: An allocation with $e(A) \leq \alpha$ can be found in polynomial time

PROOF OF THEOREM

- Given allocation A, we have an edge (i, j) in its envy graph if i envies j
- Lemma: Given partial allocation A with envy graph G, can find allocation B with acyclic envy graph H s.t. $e(B) \leq e(A)$

PROOF OF LEMMA

- If G has a cycle C, shift allocations along C to obtain A^{\prime}; clearly $e\left(A^{\prime}\right) \leq e(A)$
- \#edges in envy graph of A^{\prime} decreased:

- Same edges between $N \backslash C$
- Edges from $N \backslash C$ to C shifted
- Edges from C to $N \backslash C$ can only decrease
- Edges inside C decreased
- Iteratively remove cycles ■

Proof of Theorem

- Maintain envy $\leq \alpha$ and acyclic graph
- In round 1 , allocate good g_{1} to arbitrary agent
- g_{1}, \ldots, g_{k-1} are allocated in acyclic A
- Derive B by allocating g_{k} to source i
- $e_{j i}(B) \leq e_{j i}(A)+\alpha=\alpha$
- Use lemma to eliminate cycles ■

ВАСК TO CAKES

- Agent i makes $1 / \epsilon$ marks $x_{1}^{i}, \ldots, x_{1 / \epsilon}^{i}$ such that for every $k, V_{i}\left(\left[x_{k}^{i}, x_{k+1}^{i}\right]\right)=\epsilon$
- If intervals between consecutive marks are indivisible goods then $\alpha \leq \epsilon$
- Now we can apply the theorem
- Need n / ϵ cut queries and n^{2} / ϵ eval queries

AN EVEN SIMPLER SOLUTION

- Relies on additive valuations
- Create the "indivisible goods" like before
- Agents choose pieces in a round-robin fashion: $1, \ldots, n, 1, \ldots, n, \ldots$
- Each good chosen by agent i is preferred to the next good chosen by agent j
- This may not account for the first good g chosen by j, but $V_{i}(\{g\}) \leq \epsilon$

