Algorithms, Games, and Networks January 31, 2013

Lecture 6

Lecturer: Avrim Blum Scribe: Xiaowen Ding

1 Overview

In today’s lecture, we have a conference talk[EC09]. We discuss Price of Uncertainty(PoU),
which describes the impact that small fluctuations or a small number of incorrectly modeled
(Byzantine) players can have on dynamics in systems.

2 Perturbation model and Byzantine model

In previous lectures, we implicitly were operating under the assumption that if people are in
an equilibrium, then they will stay there. But games are an abstraction, and in this lecture
we look at ways in which imperfections in this abstraction could lead to behavior that goes
astray. We will be focusing here in particular on potential games and on dynamics in which
players move one at a time making favorable deviations if they find any (which as we saw
last time, is very natural for potential games since (a) it leads to an equilibrium, and (b)
it ordinarily cannot cause the cost of the state to increase by more than the maximum gap
between potential and cost — more about this below).

Specifically, we consider the following two settings. The first is the perturbation model in
which we allow for small fluctuations in costs between moves. The other is the Byzantine
model in which there could be one or few unpredictable players (players whose payoffs are
unmodeled).

For example, if you think about traffic flow, the cost of driving along some stretch of road
is not just a function of the number of drivers on it, but also depends on whether it is
raining, whether there is construction, various chance events etc. So if we look over time,
each day the cost function is slightly different. Also, it might be the case that some players
act unpredictably, which is the Byzantine model.

If a game has small fluctuations in costs, or a few Byzantine players, could behavior spiral
out of control?

Here are a few ways this could happen:

e small changes cause good equilibria to disappear, only bad ones left
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e Bad behavior by a few players causes pain for all

e Neither of above, but instead through more subtle interaction with dynamics

Observe the graph, small fluctuation can cause natural dynamics to get system into a high-
cost state.

3 Game properties

In this lecture, we are interested in games with the following properties:
1.Potential games with best or better response dynamics.

Potential games have non-negative potential function ®(S) such that if any player moves,
the change of potential is the same as the change of his cost.

Here, better-response means if there are multiple choices that one can take to reduce his
cost, just take one of them. And best-response means he would take the one of minimum
cost.

Better-response dynamics will eventually reach equilibrium because the potential is decreas-
ing all the time and there are only finite states. Eventually, the potential could not decrease
any more and everyone will be in a stable state.

2.Small gap between potential and social cost.

Remember what we have discussed in previous lecture, in cost-sharing games, the potential
can be bounded by cost: cost(S) < ®(S) < log(n)cost(S).

The maximum gap between ®(S) and cost(S) indicates how bad a state can get if there
are no fluctuations. Also, single small perturbations can’t make dynamics do bad things in
this model.
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3.No individual player can influence total cost of others by too much.

So, if Byzantine players cause a large effect it must be through a sequence of moves by
players rather than, e.g., the Byzantine players exercising a “nuclear option”.

4 Set-cover games

4.1 Definition

Set-cover games are a special case of fair cost-sharing.

In a set-cover game, we have n players and m resources with costs ¢y, co, ...cp, respectively.
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Each player has his personal allowable resources, and has to choose one of those allowable
resources. The cost of each resource is split among all players that choose that resource.

So the total cost of the game is cost(S) = 3_.,, > ce, and we can define potential ®(S5) =
Yoo > ey % as what we defined in previous lecture.

Also, we can model this game as a special case of the fair-cost-sharing in networks game.
Everyone has a single source and has access to some mid-points for free. And then, the
cost from the mid-point to the terminal is the cost of a resource. Here is the corresponding
graph.



Another interpretation is the set cover problem. Each set is a resource and each node is a
player, each player can choose one set from the sets it belongs to.
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Here, the problem we consider is if:

e players always follow best response dynamics

e we start this game in a low-cost state

t

e costs of resources can fluctuate between ¢ € [c;,¢;i(1 + €)] or there is one or few

Byzantine players
Then, how bad can things get?

Definition 1 (Price-of Uncertainty(PoU)) Price-of-Uncertainty(c) of game is the
mazimum ratio of eventual social cost to initial cost.

We can model this conceptually as a directed graph, where s — ¢ indicates that ¢ is reachable
from s by a move by one player such that under some perturbation, ¢ has lower cost for
that player than s does, which means perturbations can cause BR to move from s to t.
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Notice that if € = 0, we get the best response graph.

4.2 Byzantine model

Recall that in previous lecture, we proved that V equilibrium s, cost of s is at most n times
optimal cost. In following picture, two equilibriums have cost n — § and 1 separately. And
worst equilibrium has cost n — § times the optimal cost for any ¢ > 0.
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While there is not much mischief a Byzantine player could make in the above game, what
we will show is that there exist set-cover game instances such that a single Byzantine player
can cause best-response dynamics to move from a Nash equilibrium of cost O(OPT') to one
that is a factor Q(n) times worse, which in a sense is the worst situation possible.

Theorem 2 For set-cover games, a single Byzantine player can cause best-response dy-
namics to move from a pure Nash equilibrium of cost O(OPT) to a Nash equilibrium of
cost Q(n x OPT).

In the following game, we allow the Byzantine player to also control the order in which
players move.

Consider the following set-cover game, there are two kinds of players:

n players of type I, where each player ¢ has two sets to choose from: a common set s* of
cost n, and a set s; of cost n — 4.
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And n — 1 players of type II, such that player k of type II may either choose any of the sets
s; or else its own set fi of cost n/k.
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And we have another Byzantine player. First, we are in the best equilibrium. Then, the
Byzantine player and type II players slowly lure all type I players into the sets s;. First,
Byzantine player moves to s1, every player of type II will move to s1, then player 1 of type
I will move to s;. The Byzantine player then sequentially moves to each set f,_1,..., fa ,
causing the players of type II to move to their sets fi in that order. Specifically, at the time
player k of type II moves, the set s; has a cost to it of (n — 1)/k, whereas set fj has cost
(with the Byzantine player) of n/(2k).

Now the Byzantine player moves to set ss, causing type II players move to so. Specifically,
at the time player k moves, set sg has cost (n — 1)/k which is lower than the cost n/k of f.
At the end of this step we have the same configuration of type II players as in the initial
state, except with sg rather than s;. The entire process then repeats for player 2 of type I,
and so on, until each player i of type I is on its own set s;. Finally, since s* is now empty,
none of the type I players wish to move so we are at an equilibrium.

4.3 Perturbation model

Note that in the previous example, if there is no Byzantine player and € = 1, things could
happen just as with the Byzantine player. Type II players can move to s; sequentially to
make the ith player of type I moving to s;.

Now, we show that if fluctuations are sufficiently small, then the situation cannot get so

out of hand.

Theorem 3 In the set-cover game, for any fluctuation € > 0, the potential of the final set
is at most (1 4 &)™ times the original potential.

Think of players in sets as a stack of chips. View the ith position in stack j as having cost
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¢;/i. Load chips with value equal to initial cost. When player moves from j to k, move top
chip. Cost of position goes up by at most (1 + ) because fluctuation is at most (1 + ¢).

There are at most mn different positions because each player has at most m resources to
choose from and each stack has n positions. So, following the path of any chip and removing
loops, cost of final set is at most (1 + &)™ times initial value.

If e = O(1/nm), PoU is at most (14¢)™ xlogn = O(logn) because ®(5) < cost(S) x logn.

5 Fair cost sharing in general graphs

We now consider fair cost sharing in general graphs, under the assumption that there are
many players of each type. That is, for each player there are many other players who also
have the same starting and ending points. (In game theory, two players are of the same
type if they have the same strategy space and utility function.)

Theorem 4 If number of players of each type is Q(m), the PoU of best response is O(1)
for any constant ¢.

In this case, it is hard to analyze cost of the state directly. Instead, we track the upper
bound ¢*(S¢) = cost(Sp U ... U St).

Call an edge "marked” if it is ever used throughout the best-response process, including
those used in the initial state. Then c¢* is the total cost of all marked edges. So c* is always
an upper bound on the cost until the current state.

Any time a best-response path for some (s;, ;) pair uses an unmarked edge, the total cost
of the unmarked edges used in that path is at most (¢*/n;)(1+ ) because the average cost
of players of this type is at most ¢*/n; before this step, and a player would never deviate
to a path of cost more than the average.

Notice that ¢* can change at most m times. Each time, the total cost can increase by at most
a multiplicative (14 (1+¢)/n;) with minimum n;. With n; = Q(m), (1+(1+¢)/n;)™ = O(1)
when ¢ is constant.

6 Market sharing model and $-nice game

Here, we discuss market sharing, in which we replace cost with benefit. Here, each player
try to maximize their benefit instead of minimizing their cost.

6-7



1+e 1/2 1/3 1/4 1/5

Even if there is no fluctuation, the system might change to a state that is 1/log(n) of
optimal by sequentially moving to the resource of 1+ .

In this graph, equilibrium state is a state that the first half players stay in personal their
resources, and the second half move to public resource. And the social benefit is about

log(n/2).

One interesting observation is that the social optimal is not an equilibrium. Then, our goal
is that equilibrium cannot too far away from optimal.

For each player, we define A;(S) = cost(S) — cost(S?) where S is ith best response, and

A(S) = 3 Ai(S).

Definition 5 An exact potential game G with a potential function ® is B-nice iff for any
state S, we have 2A(S) > cost(S) — BOPT.

[B-nice games incentive grows stronger as cost gets above [ times optimal.(Typically 5 =
PoA)

[-nice games can at least show state won’t get above ( times optimal, even with substantial
perturbation or many Byzantine players.

7 Conclusion

In set-cover games,

e a single Byzantine player can make cost n times optimal.
e with perturbation ¢ =1, PoU = Q(n)
o If e =O(1/nm), PoU = O(logn)

In general fair-cost-sharing games,

e For each type of players, the number of players is Q(n), PoU = O(1) for any constant
e>0
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Subsequent results:

e Set-cover games

— Upper bound with dependence only on m, not n

— Lower bound under random move-ordering
e Consensus games

— Nearly-tight bounds on effect of e-perturbations
— Tight bounds on effect of B Byzantine players

Open problems:

e General case of fair cost-sharing games?
e Analyze time to failure for random fluctuations?

e Instance-based analysis?
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