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1 Overview

In the next few lectures we’ll take a look at social networks. Specifically, we’ll look at how
ideas, behaviors, or anything else might spread through a connected population. One very
clear example is a product like Facebook or Google+. Each process starts with a small
group of early adopters, and then spreads through existing social connections to the larger
population. For example, all Google employees may start with a Google+ account, but an
outside person would only adopt the product if a sufficient number of friends are already
using it. Other examples include religious beliefs, political ideas, or other new ideas and
products.

In this lecture, we’ll particularly look at what it takes for a new product or behavior to
catch on and ”infect” the entire population. We’ll assume the product starts with a small
group of early adopters, and attempts to spread to an entire infinite population.

2 Formalization

We define a social network as an undirected graph G = (V,E), where V is countably infinite
but the number of edges connected to any vertex v ∈ V is finite. We treat the vertices as
people who have a choice between an old behavior A, and a new behavior B. We also use
a parameter q ∈ (0, 1) which, intuitively, measures how attractive the new behavior is.

Consider nodes u and v, and their edge (u, v) ∈ E. We’ll define their rewards as follows:

• If both choose A, then they receive q.

• If both adopt B, then they receive 1− q.

• Otherwise, both receive 0.

The overall payoff to v is the sum of payoffs from each neighbor.

We denote the degree of v as dv, and the number of neighbors of v who adopt X by dXv .
Consider the question, when should v switch from choosing A to choosing B? v would need

22-1



the expected reward from B to be higher than from A. By our definitions, the expected
reward for choosing A is qdAv , and the reward from adopting B is (1− q)dBv . Thus, v adopts
B if (1− q)dBv ≥ qdAv . After evaluating, this becomes dBv ≥ qdv. That is, v only adopts B if
at least a q fraction of v’s connections have already adopted B. Thus, q acts as a threshold.

3 Cascading Behavior

We now extend this model further by introducing time steps t = 1, 2, .... At every time step,
each node will evaluate its options (that is, choosing either A or B), and choose to adopt
the higher-payoff behavior for the next time step. The choices and adoptions are all done
simultaneously, and all players play a best response without considering how other players
will adapt. Furthermore, a node is not stuck with B once it is adopted. At a future time
step, a node can switch back to A if it wishes to.

We assume there is a finite set S of nodes who initially adopt B. After one round, we
denote the set of nodes that are now adopting B as hq(S). After k rounds, the set of nodes
adopting B is denoted as hkq (S). We say v is converted by S if ∃k s.t. v ∈ hkq (S). That
is, v is converted if it has ever adopted B, even if it later switches back to A. We say S is
contagious if every node is converted (even if they are not all simultaneously adopting B).

We’re particularly interested in the case of a finite S. In some cases, a finite set S can
be contagious in a graph G. In other cases, it can’t. Clearly though, it is easier for a set
S to be contagious when q is lower. We’ll define the contagion threshold of G to be the
maximum q such that a finite contagious set exists.

4 Examples

We now consider some particular examples. First, consider the graph shown below with
infinitely many nodes arranged in a line, with each node connected to its two neighbors.
What would the contagion threshold of this graph be? For simplicity, suppose the set S
consists of a single node at time t = 0.

It’s pretty easy to see the answer is q = 1
2 . Clearly, at time t = 1 the neighbors of S would

become infected if and only if q ≤ 1
2 . Furthermore, since the original node has 0/2 neighbors

adopting B, it adopts A at time t = 1. Thus, at t = 1 we have

At t = 2, we then have
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This trend continues so that every node is eventually converted (though never all of them
at the same time).

We now consider a somewhat more complicated example. Suppose G is a square lattice, with
each node connected to its 4 neighbors as shown below. What is the contagion threshold of
G in this case?

Notice that any finite S can be bounded by a box. Clearly, in order for S to be contagious,
it must eventually be possible to convert a node on the outside border of this box. But each
node outside the box has at most 1 neighbor inside the box (out of 4 neighbors). Thus, the
contagion threshold is at most 1

4 . It’s also clear to see that 1
4 is sufficient to convert the

entire graph starting with any S.

5 Progressive Processes

So far we’ve only considered the Nonprogressive Process where nodes can switch from A
to B or B to A. We now consider the Progressive Process where nodes can only switch
from A to B, and can never go back to A. Everything else from our model remains the
same. We denote the set of nodes adopting B in the progressive process with contagion
threshold q by h̄q(S). Intuitively, one would think that the contagion threshold of a graph
would be higher in the progressive case. However, as we’ll see now, the contagion threshold
is the same in either case.

Theorem 1 For any graph G, the contagion threshold is identical for progressive and non-
progressive processes.

Proof . We first prove the lemma: h̄jq(X) = hq(h̄
j−1
q (X)) ∪ X using induction. For the

base case, clearly when j = 1 we have h̄q(X) = hq(X) ∪ X. It can easily be seen that

h̄j−1
q (X) ⊇ hq(h̄

j−1
q (X)) ∪X, so we need only show h̄j−1

q (X) ⊆ hq(h̄
j−1
q (X)) ∪X. By the

induction assumption, we have h̄j−1
q (X) = hq(h̄

j−2
q (X)) ∪X. Clearly h̄j−2

q (X) ⊆ h̄j−1
q (X),

so we have h̄j−1
q (X) ⊆ hq(h̄j−1

q (X)) ∪X.
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We now move onto the main part of the proof. Obviously, if S is contagious for hq then a
finite contagious set exists for h̄q (namely, the same set S). We’ll now show the converse.
Assume S is contagious for h̄q. Let N(S) = {u : v ∈ S, (u, v) ∈ E} (that is, the set of all
neighbors of S). Since S is contagious for h̄q, so clearly ∃l such that S ∪ N(S) ⊆ h̄lq(S).

We’ll show h̄lq(S) is contagious for hq.

By our earlier lemma, for j > l, h̄jq(S) = hq(h̄
j−1
q (S)) ∪ S. But we can see that S ⊆

hq(h̄
j−1
q (S)), because S ∪ N(S) ⊆ h̄j−1

q (S), which means all the neighbors of every v ∈ S
are playing B, and so clearly v would continue to play B. Simplifying, we now have that
for j > l, h̄jq(S) = hq(h̄

j−1
q (S)). Therefore, we can see that hj−1

q (h̄lq(S)) = h̄jq(S). Recall

that S is contagious for h̄q, so therefore h̄lq(S) is contagious for hq. �

6 Maximum Contagion Threshold

Let’s now move on to a different question: Does there exist a graph with contagion threshold
> 1

2? It turns out there doesn’t.

Theorem 2 For any graph G, the contagion threshold ≤ 1
2 .

Here is a sketch of the proof. First, due to the previous theorem, note that we need only
look at the progressive case.

Let δ(X) = {(u, v) ∈ E : u ∈ X, v ∈ V \X}. Consider the vertices v ∈ h̄jq(S) \ h̄j−1
q (S). For

each v, because q > 1
2 , v has strictly more edges into h̄j−1

q than outside of h̄j−1
q . Therefore,

δ(h̄jq(S)) < δ(h̄j−1
q (S)). Recall that S must be finite, and each vertex has finite edges. Thus,

δ(h̄jq(S)) is finite ∀j, and shrinks at every time step. Therefore, the set must eventually
cease expanding and remain forever finite. �

7 Other Models

There are other models we could consider as well. For example, so far we have only looked at
undirected graphs. A directed graph could model asymmetric influence. For these models,
let N(v) = {u ∈ V : (u, v) ∈ E}. We’ll assume a progresive contagion, and say a node is
active if it adopts B, and activated if it switches from A to B this round.

In the Linear Threshold Model, we assign each edge (u, v) ∈ E some nonnegative weight
wuv, or wuv = 0 if no weight is assigned. Assume ∀v ∈ V ,

∑
uwuv ≤ 1. Each v ∈ V has a

threshold θv. Then v becomes active if

∑
active u

wuv ≥ θv
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The Linear Model assumes additive influence, but we may not want to assume that. We
could also use the General Threshold Model. In this model, v has a monotonic function gv(·)
defined on subsets X ⊆ N(v). Then v becomes activated if the activated subset X ⊆ N(v)
satisfies gv(X) ≥ θv.

Finally, we can consider the Cascade Model. In this model, when ∃(u, v) ∈ E s.t. u is active
and v is not, u has only one chance to activate v. Each v has an incrementalfunction
pv(u,X), which equals the probability that u activates v when X have tried and failed.

There are a couple special cases in the Cascade Model. The first is diminishing returns,
where pv(u,X) ≥ pv(u, Y ) when X ⊆ Y . The second is called Independent cascade, where
pv(u,X) = puv.

22-5


