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Kidney failure is a big problem, obviously. Dialysis is not a great option, transplants are
better. The number of kidneys in the donor kidney supply is limited and the demand
remains much higher. The best option is transplantation from a live donor but there are
many issues of compatibility.

The notion of Kidney exchange is to match incompatible donor-patient pairs with other
incompatible pairs.

More generally, we model with a directed graph G = (V, E), each v in the set V' is a donor-
patient pair. Edge (u,v) exists in E if the donor in u is compatible with the patient in v.
We then exchange along cycles, optimally, pairwise cycles.

1 Cycle Cover

Cycle cover aims for maximum cover by cycles. If a cycle is unrestricted then the problem is
in P. But, cycle cap is a medical necessity, because, transplants must be done simultaneously
as there is no way to legally enforce the exchange of body parts. Cycles of length K require
2K operating rooms (one patient and each donor) which makes the logistics very hard, so
3 cycles tends to be the upper bound.

Theorem 1 (Abraham et al. 2007) Given G, L < 3, computing a mazx cycle cover with
cycles of length < L is NP-hard.

This is a somewhat unintuitive claim, because for L = 2 the problem is is simply the maxi-
mum cardinality matching problem in an undirected graph, which can be solved efficiently.
For a proof of the Theorem, see Theorem 1 of Abraham et al. [1].

1.1 Cycle cover in practice

The projected size of the US national kidney exchange pool is 10,000, but even at that
scale we can still compute this match in a reasonable amount of time. (see slide 7 for more
details)
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2 Are long cycles needed?

A donor is compatible with a patient if the patient has 'more letters’ in their blood type
(O is empty set). Example - A can donate to A or AB but not B or O. (the donors letters
need to be a subset of the donors)

In the following case we assume there are no issue type incompatibilities between pairs but
this is not strictly the case in practice. As there are two types of incompatibilities: blood
type and tissue type.

2.1 Classification of Pairs

We classify donor-patient pairs into 4 types.

Self-demanded: X-X

Reciprocally-demanded: A-B and B-A

Over-demanded: X-Y that are blood-type compatible

Under-demanded: X-Y that re blood-type incompatible

Based on this classification there are 16 possible vertex types (see slide 12 for illustration).
We assume that there is an infinite supply of under-demanded pairs.

2.2 The structure of the optimal 2 cycle matching:

First, the over demanded can match with under demanded (assuming the pools are infinite
sized). Because each over-demanded vertex can only help one vertex, and because there are
unlimited pairs, this is optimal.

Then, reciprocal demands could be matched with over demanded but can’t because under
demanded has taken them all. So we match them internally. Self demanded are also not
possible to match externally because all others are taken, so we match as many as possible
matches among same pair types. (illustration on slide 12)

2.3 The structure of the optimal 3 cycle matching:

With 3 we can deal with odd numbers of self demanded pairs.Also, AB-O pairs can form
3 cycle chains with O-A, A-AB or O-B, B-AB, and remaining reciprocal demanded can be
matched in 3 cycles with A-O and B-O (together). So we get more exchanges.
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Assuming that we draw each of the n pairs from product distribution over blood types;
each type has a constant probability, which of these three opportunities gives 2(n) extra
matches?

It turns out matching with AB-O pairs offers the most new matches because it helps 2 under
demanded donors which will lead to extra match for each AB-O pair. Matching with self
demanded pairs only adds a small number of new matches, while A-O and B-O matching
adds a reasonable number but the influence depends on the number of “leftover” A-B and
B-A pairs, which is o(n).

3 A random graph model

Each blood type X has probability px. Draw blood types for patient and donor. Blood
type comparable donor and patients are tissue incompatibility with ~ > 0.

If donor patient pair is internally compatible, remove them, otherwise, randomly generate
edges to blood type comparable pairs.

Tissue type compatibility probabilities are critical to finding good matches.

Theorem 2 [3] In large random graphs you don’t need cycles with L < 3

4 Chains

Altruistic donors can initiate a chain. Sometimes people offer a kidney for free to whomever
needs it. This can lead to long change that are not simultaneous and has a huge impact on
overall matches made.

See slide 17 for a chart on cardinality with longer chains.

In large exchanges, chains provide less substantial benefits
Theorem 3 [/, 2] In large random graphs w.h.p Jopt allocation with cycles of length < 3.

Basically, you don’t gain from longer chains. (see slide 18 for evidence of this theorem)

5 Introducing Cross-matches

Cross-matching involves mixing cells and serum to determine whether a patient will reject
the kidney. Blood samples must be in physical contact to do this, making it expensive and
logistically difficult.
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It adds another level of uncertainty and we assume that cross-match is negative with some
probability, so optimization should favor short cycles and short chains. Although this makes
matching harder, in practice, it works quite well. (see slide 20 for real world results and 21
for simulated ones)

6 Introducing Dynamics

People are always entering and leaving the pool, this makes the problem dynamic and means
that the long term view may be more important. Matching myopically is not always optimal
as people die, so we tend to elect not to save great pairs for the future.

A partial solution is to assign a weight to each vertex that shows its potential to have
more value in the future. In each round, we maximize cardinality of matching with the
total potential removed. We optimize potential using a local search, essentially running a
simulation many times with different parameters to work out what works best.
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