
Algorithms, Games, and Networks January 15, 2013

Lecture 1

Lecturer: Avrim Blum Scribe: Jamie Morgenstern

1 Overview and Procedural Stuff

This course is going to be about the theory and algorithms of systems with interacting
agents, each with their own intests in mind. For example, we’ll talk about auctions, routing,
fair division, and more general games.

• Basics of game theory, equilibria

• Quality of equilibria: price of Anarchy

• Social choice: voting, manipulation

• Mechanism design: designing rules of the game to acheif desired outcome, auctions

• Kidney echange, matching markets

• Social networks

• Fair division

The course book will be “Algorithmic Game Theory”, which is available freely on the web.
The required work for the course is:

• 4 homeworks

• A final project

• Scribing one lecture * Find the link on the course webpage.

• Helping grade one HW

• Participation in class

There’s also a Piazza for the course, which you can also find on the course webpage.
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2 A Basic Introduction to Game Theory

The field of game theory was developed by economists to study social and economic inter-
actions. For example, they wanted to study the rationale for people’s actions in economic
situations. What are the effects of incentives? A game is an interaction between parties
with their own interest. Computer scientists care about game theory because many of to-
day’s systems or platforms (such as the internet, or e-mail) involve self-interested agents
interacting with each other, which can cause all sorts of weird scenarios, good and bad.

The basic setting in which we’ll be working will have players, or participants. There will
be a set of strategies, or choices that each player may choose among. Each player gets some
payment or payoff, which is a function of the combined strategy choices of all the players.

Our first example is the “Walking on the Sidewalk Game.” Suppose there are two players
walking towards each other. They can each choose to walk on either their left or their right.
If each chooses to walk on their left (or right), then they can pass by each other without
difficulty. If, however, one player chooses their left and the other player chooses their right,
they either run into each other or have to shift back and forth, an undesireable outcome for
both players. Here is a way we can encode this sort of game, listing one player’s options as
rows and one player’s options as columns:
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Payoff Matrix

The leftmost number in each cell represents the payment for the row player, and the right-
most number represents the payment for the column player. The tuple of row and column
actions determines which cell the payments come from.

A key notion we’ll discuss in this class of that of a Nash Equilibrium. Formally, a Nash
equilibrium is a tuple of actions (or a tuple of distributions over actions), one entry for
each player, such that any player, given everyone else plays their part of the tuple, has no
incentive to deviate from their own part of the tuple.

There are three Nash equilibria in this game: everyone walking on the right, everyone
walking on the left, and each person choosing left and right with probability 1/2. The last
Nash equilibrium is called a mixed Nash, while the first two are called pure Nash, because
the first two use pure or deterministic strategies, while the other Nash has players playing
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mixed strategies, or randomizing over strategies.

Another classic example of a game is called the Prisoner’s Dilemma. Consider there are two
companies that are trying to decide whether they should install polution controls. If it costs
$4 to install polution control for the player who installs it, and each player benefits from
breathing cleaner air (and paying less in worker’s comp) by $3 for each polution control
installed. So, here is the payoff matrix for this game:
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As it turns out, there is only one Nash equilibrium in this game: everyone deciding not to
install the polution controls. If both firms have polution controls, either of the firms would
make more money removing their controls. If just one firm has polution controls, that one
firm would stop losing money if they removed their polution controls. If neither firm installs
polution controls, neither firm has incentive to install them. This game is also known as
the Tragedy of the Commons. Also, notice that, regardless of what the other firm is doing,
a firm does best if they choose not to install polution controls. This is an example of an
dominant strategy : it is the best action to take regardless of what the other player chooses
to do.

Another game is one called Matching Pennies/Penalty Shot. Simultaneaously, the goalie
and the shooter have to decide whether to go left or right. If they both go left or right, no
goal is made; if one goes left and the other goes right, a goal is made and the goalie loses a
point for his team and the shooter earns a score for his team. Here is the payoff matrix for
this game:
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This game is somewhat different than the previous games we’ve talked about. If either player
is deterministically playing left or Right, the other player has incentive to be deterministic
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(in the case of the goalie, in the same direction as the shooter, in the case of the shooter, to
the opposite direction of the goalie). This means there isn’t a deterministic pair of strategies
where one player won’t have incentive to deviate. In fact, the only Nash equilibrium in this
game is the randomized pair of strategies where each player goes left or right with probability
1/2. To see that no other mixed Nash exists, notice that if either player is slightly biased,
then the other player has incentive to play deterministically one way or the other.

These equilibra were named after John Nash. In 1950, he proved the following theorem.

Theorem 1 Every game admits a mixed Nash equilibrium, if there is a finite number of
players and a finite number of strategies for each player to choose between.

Let’s introduce some notation because this is already cumbersome to write out in words. In
general, there will be a payment matrix for each of the players (we’ve been superimposing
them in the previous examples). Suppose we have just two players, the row player and the
column player. Say the payoff matrix for the row player is called R, and the the payoff matrix
for the column player is called C. Then, (p, q) (where p is a probability distribution over
actions for the row player and similarly for q and the column player) is a Nash equilibrium
if

pTRq ≥ eTi Rq ∀i

and

pTCq ≥ pTQej ∀j

In words, no particular deterministic action for either the row or column player increases
the (expected) payoff for the row or column. This implies there is no benefit for either the
row or column player to shift their probability distributions from p or q, respectively. This
also implies that any i, j with pi, pj > 0 must have equal expected payoff, or there would
be incentive to move towards the one has the larger expected payoff. Similarly, this is true
for all qi, qj > 0.

There are some strange things which can occur with Nash equilibria. For example, Braess
paradox has a bunch of players who are playing on a road network. Everyone is trying to
get from s to t, and players choose between paths in the network. Some roads have infinite
capacity, so their is now slow-down if lots of people use the road, while other roads will
get traffic build-up (where the time to travel along the road is a function of the number of
players who choose to take the road).
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Strategy 2

Strategy 1
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Think of x as the fraction of players using that edge. The Nash equilbrium in this case
is half of the players taking each path. The paradox comes in if one adds a superhighway
between the middle two nodes, with infinite capacity (so there is zero cost for taking the
superhighway):

Strategy 2

Strategy 1

x

1

1

x
0 Strategy 3

In this case, in a Nash equilibrium you will have to have all players (or all but one) taking
both of the x edges. This means that even though we increased capacity, the travel time
for every player has increased from 1.5 to 2. It is a bit like the prisoner’s dilemma.

2.1 Two-player zero-sum games

We’ll now talk about games with 2 players, where the sum of the payoffs for the row and
column players, for any pair of strategies, is 0. These are called zero-sum games. These
games need not be fair; for example, the penalty shot game isn’t “fair” since you’d rather
be taking the shot than receiving it. Zero-sum just means that any time one person gains
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some amount, the other player loses that amount.

A minimax-optimal strategy is a randomized strategy that has the best guarantee on its
expected gain, over all possible choices of the opponent. That is, this is the strategy you
should play if your opponent knows you well: if he is to best-respond to whatever strategy
you choose, your strategy is maximizing your expected payoff (and, similarly, minimizing
her expected payoff, since this is zero-sum). In the case of the shooter game, the 50/50
strategy for each of the players is minimax-optimal.

If we have a goalie who’s weaker on his left, the payoff might look like this:
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What is the minimax-optimal pair of strategies for this modified game? Place probability
p on the shooter going left, and 1− p on the shooter going right. Then, one can solve and
see that the shooter gets the best worst-case guarantee for p = 2/3. In this case, the ball
has a 2/3 probability of going in whichever way the goalie dives. It’s also the case that the
goalie has a minimax optimal strategy to go left 2/3 of the time. This guarantees that the
ball has at most a 2/3 probability of going in, whichever way the shooter shoots.

In general, one can find the minimax-optimal (pair of) strategies in a larger game using
linear programming. We’ll have variables p1, . . . , pk, v, and use the following LP:

maximize v

subject to

p ·Mj ≥ v ∀j
k∑

i=1

pi = 1

pi ≥ 0 ∀i

The game we analyzed above had the property that there was a value v (in that case, 2/3)
such that the row player had a (randomized) strategy guaranteeing an expected gain at least
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v no matter what column the column-player chose, and similarly the column-player had a
(randomized) strategy guaranteeing an expected loss at most v no matter what row the row-
player chose. In other words, if you’re optimal and playing against an optimal opponent, it
doesn’t hurt to reveal your (randomized) strategy. This in fact holds in general, and is the
minimax theorem proved by Von Neumann in 1928.

Theorem 2 Every 2-player, zero-sum game has a unique value v, and minimax optimal
strategies p and q for each player such that the row player can guarantee payoff at least v
playing p and the column player can guarantee her loss to be at most v playing q.

We can actually prove the minimax theorem using the existence of Nash equilibria in 2-
player, zero-sum games.

Proof: Pick some NE (p, q) and let V be the value to the row player in that equilibrium
(and −V is what the column player gets). Neither player can do better by deviating from
their strategy, even knowing the strategy of the other player (since it’s a Nash Equilibrium).
Since the column player can’t do any better by deviating, this means (because the game
is zero-sum) that by playing p, the row player is guaranteed an expected gain ≥ V no
matter what the column player does. Similarly, since the row-player can’t do any better
by deviating, this means that by playing q, the column player is guaranteed an expected
loss ≤ V no matter what the row-player does. So, they are both playing minimax optimal
strategies.

There are much more constructive arguments for the minimax theorem, which we’ll look
at soon. We can, however, solve for minimax optimal strategies in polynomial time. On
the other hand, solving for Nash equilibria is PPAD-hard, and a slough of other questions
relating to the properties of Nash equilibria of a certain game are NP-hard.

Can one use the notion of minimax optimality to understand some game like poker? Con-
sider Kuhn poker. There are three cards 1, 2, 3, and two players A,B. Each players antes
$1. Each player gets one card. A goes first. Can bet $1 or pass. If A bets, B can call or
fold. If A passes, B can bet $1 or pass. If B bets, A can call or fold. Then, whoever has
the highest card wins (unless a player folds, in which case the other player wins).

If we wanted to write this game as a matrix, we need to think about the interactions like a
program. For a given card, A can decide to do one of the following:

• Pass but fold if B bets

• Pass and bet of B bets

• Fold

So, A will have 9 possible actions: for each card, can choose one of the three above actions.
A could randomize over these strategies, too. Similarly, B can write a program-like strategy
out as a function of his card and what A does.
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The minimax-optimal strategies for this are:

For A:

• If hold 1, then 5
6 PassFold and 1

6 Bet

• If hold 2, then 1
2 PassFold and 1

2 PassCall

• If hold 3, then 1
2 and 1

2 Bet

For B:

• If hold 1, then 2
3 FoldPass and 1

3 FoldBet

• If hold 2, then 2
3 FoldPass and 13 CallPass.

• If hold 3, then CallBet

This game has slightly negative value for A: her expected payoff is −1/18.

2.2 Proof of existence of Nash equilibria

How could we prove the existence of the Nash Equilibria? We’ll use a big hammer called
Brouwer’s Fixed-point theorem.

Theorem 3 Let S be a convex compact region in Rn and let f : S → S be a continuous
function. Then there must exist x ∈ S such that f(x) = x. x is called a fixed-point of f .

On a line segment, or 1-space, this theorem is intuitive. This theorem is highly non-obvious
in n-space. Notice that while it’s true for [0, 1], it is not true for (0, 1) — e.g., consider
f(x) = x/2. It’s also not true for the infinite line — e.g., consider f(x) = x+ 1. Also while
it is true for the circle with interior included {(x, y) : x2 + y2 ≤ 1}, it is not true for the
circle without the interior {(x, y) : x2 + y2 = 1} — e.g, consider f((x, y)) = −(x, y).

Now, we’ll prove the existence of Nash equilibria for two-player games of finite action-space
size.

Proof:

We will talk about S = {(p, q) : p, q are legal probability distributions on 1, . . . , n}. Ie, S is
the set of pairs of mixed strategies. This is a convex compact set. We want to define some
f(p, q) = (p′, q′) such that f is continuous, and any fixed point of f is a Nash equilibrium.
Then, we can apply Brouwer’s fixed-point theorem and have a proof.

Our first attempt is f(p, q) = (p′, q′) where p′ is the best response to q and q′ is the best-
response to p. This has two problems. First, the function isn’t continuous (think about the
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goalie game; a very slight change in one player’s strategy can make the best-response for
another to shift their weight entirely to L or R) and is also not well-defined. Instead, let’s
try f(p, q) = (p′, q′) such that

• q′ maximizes [(expected gain w.r.t p)− || q − q′ ||2]

• p′ maximizes [(expected gain w.r.t q)− || p− p′ ||2]

You can think of this as penalizing p′ and q′ for moving too far from p and q. This is
well-defined, because both players are maximizing a negative quadratic. Moreover, it’s
continuous because quadratic and linear functions are continuous.

So, it remains to show that a fixed-point of f is a Nash equilibrium. This is easiest to see
by contrapositive. Suppose (p, q) is not a Nash equilibrium. This means that for at least
one of the players (say, the column player), there is some point on the simplex she would
rather be than her current strategy. This means the linear term above has positive slope
in some direction along the simplex. Since the second (quadratic) term has derivative zero
at zero, this means the maximum of the sum (linear + quadratic) must occur at a point of
nonzero distance. So, we are not at a fixed point.
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