
15-780 – Graduate Artificial Intelligence:
Linear programming

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University

Spring 2018

1

Outline

Introduction

Linear programming

Simplex algorithm

Duality

Dual simplex

2

Logistics

HW1 to be released this weekend

3

Outline

Introduction

Linear programming

Simplex algorithm

4

Outline

Introduction

Linear programming

Simplex algorithm

Duality

Dual simplex

5

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

6

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

7

x1 (tables)

x2 (chairs)

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

8

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

9

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

10

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Profit = 2x1 + x2

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

11

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Profit = 2x1 + x2
x⋆1 = 2.4, x⋆2 = 1.8

Many applications

Finding optimal strategy in zero-sum two player games

Finding most probable assignment in probabilistic models

Finding solution in Markov decision processes

Min-cut / max-flow network problems

Applications: economic portfolio optimization, robotic control, scheduling
generation in smart grids, many many others

12

Outline

Introduction

Linear programming

Simplex algorithm

Duality

Dual simplex

13

Example manufacturing

We can write our manufacturing problem formally as:

14

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Profit = 2x1 + x2

 maximize
!1,!2

 2𝑥1 + 𝑥2

subject to 3𝑥1 + 𝑥2 ≤ 9
 𝑥1 + 2𝑥2 ≤ 6
 𝑥1,𝑥2 ≥ 0

Inequality form linear programs

Using linear algebra notation, we can write problems compactly as
 maximize

!
 𝑐+ 𝑥

subject to 𝐺𝑥 ≤ ℎ
with optimization variable 𝑥 ∈ ℝ0, problem data 𝑐 ∈ ℝ0, 𝐺 ∈ ℝ1×0,
ℎ ∈ ℝ1 and where ≤ denotes elementwise inequality

A convex optimization problem (objective is affine, constraints are convex)

Our example:

15

 maximize
!1,!2

 2𝑥1 + 𝑥2

subject to 3𝑥1 + 𝑥2 ≤ 9
 𝑥1 + 2𝑥2 ≤ 6
 𝑥1,𝑥2 ≥ 0

𝑐 = 2
1 ,𝐺 =

3 1
1 2

−1 0
0 −1

,ℎ =
 9
6
0
0

⟺

Geometry of linear programs

Consider a single row of the constraint matrix
𝑔6

+ 𝑥 ≤ ℎ6

This represents a halfspace constraint

16

x1

x2

gi
hi

∥gi∥2

Linear polytope

Multiple halfspace constraints 𝐺𝑥 ≤ ℎ (i.e., 𝑔6
+ 𝑥 ≤ ℎ6, 𝑖 = 1,… , 𝑚)

define what is called a polytope

So linear programming in equivalent to maximizing some direction over
this polytope (note that optimum will always occur on a corner)

17

x1

x2

g1

g2
g3

g4

g5 g6

Poll: Number of corners in a polytope

Consider a polytope in 𝑛 dimensional space, defined by 𝑂(𝑛) linear
inequalities. How many corners (vertices) of the polytope can there be?

1. 𝑂 𝑛

2. 𝑂(𝑛2)

3. 𝑂(𝑐0)

4. 𝑂(𝑛0)

18

Poll: Number of inequalities in a polytope

Consider a polytope in 𝑛 dimensional space, with 𝑂 𝑛 corners
(vertices). How many linear inequalities could we need to define the
polytope?

1. 𝑂 𝑛

2. 𝑂(𝑛2)

3. 𝑂(𝑐0)

4. 𝑂(𝑛0)

19

Infeasible or unbounded polytopes

Polytopes may be infeasible or unbounded, correspond to have no
solution or potentially an unbounded solution for linear program

20

x1

x2

g1
g2

g3

x1

x2 g1

g2

g3 g4

c

Standard form linear programs

For the simplex algorithm, we will consider linear programs in an
alternative form, known as standard form:

 minimize
!

 𝑐+ 𝑥
subject to 𝐴𝑥 = 𝑏
 𝑥 ≥ 0

with optimization variable 𝑥 ∈ ℝ0, and problem data 𝑐 ∈ ℝ0, 𝐴 ∈
ℝ1×0, 𝑏 ∈ ℝ1 (note: 𝑚, 𝑛 are not related to previous sizes)

Looks different, but it is straightforward to convert between inequality
form and standard form by adding slack variables

𝑔6
+ 𝑥 ≤ ℎ6 ⟹ 𝑔6

+ 𝑥 + 𝑠6 = ℎ6, 𝑠6 ≥ 0

Can also separate non-negative variables in positive/negative part

21

Converting to standard form

Can convert our example problem to standard form:

22

 maximize
!1,!2

 2𝑥1 + 𝑥2

subject to 3𝑥1 + 𝑥2 ≤ 9
 𝑥1 + 2𝑥2 ≤ 6
 𝑥1,𝑥2 ≥ 0

 minimize
!1,!2,!3,!4

 −2𝑥1 − 𝑥2

subject to 3𝑥1 + 𝑥2 + 𝑥3 = 9
 𝑥1 + 2𝑥2 + 𝑥4 = 6
 𝑥1,𝑥2,𝑥3,𝑥4 ≥ 0

𝑐 = −2
−1 ,𝐴 = 3 1 1 0

1 2 0 1 , 𝑏 = 9
6

Finding corners in polytope

In standard form we assume 𝑛 > 𝑚 (plus some technical conditions like
full row rank), so 𝐴 is an underdetermined system of linear equations

To find solutions to subsets of these equations, we can select 𝑚 columns
from 𝐴, denoted 𝐴ℐ for some set ℐ ⊂ {1,… , 𝑛} with ℐ = 𝑚, and
solve the resulting linear system

𝐴ℐ𝑥ℐ = 𝑏
(then set remaining entries of 𝑥 to zero)

Solutions for which 𝑥 ≥ 0, correspond to corners on the polytope

Note: We’ll use 𝐴ℐ to denote subselecting columns of 𝐴, 𝐴F to denote
the 𝑗th column of 𝐴, and 𝑥ℐ to denote subselecting element of 𝑥

23

Finding corners in polytope

Polytope from our example:

24

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = {3,4}

𝑥ℐ = 𝐴ℐ
−1𝑏

 = 1 0
0 1

−1 9
6 = 9

6

𝑥 =
 0
0
9
6

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Finding corners in polytope

Polytope from our example:

25

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = {1,4}

𝑥ℐ = 𝐴ℐ
−1𝑏

 = 3 0
1 1

−1 9
6 = 3

3

𝑥 =
 3
0
0
3

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Finding corners in polytope

Polytope from our example:

26

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = {1,3}

𝑥ℐ = 𝐴ℐ
−1𝑏

 = 3 1
1 0

−1 9
6 = 6

−9

𝑥 =
 6
0

−9
0

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Outline

Introduction

Linear programming

Simplex algorithm

Duality

Dual simplex

27

Simplex algorithm

Basic idea of the simplex algorithm is to move along the edges of the
polytope from corner to corner, in directions of decreasing cost

In worst case, move along an exponentially large number of corners, but
typically much better in practice (the first “practical” algorithm for linear
programming)

28

x1

x2

−c

A single step of the simplex algorithm

Suppose we are optimizing the standard form linear program
minimize

!
 𝑐+ 𝑥

subject to 𝐴𝑥 = 𝑏
 𝑥 ≥ 0

and suppose we have some initial feasible corner point 𝑥 (i.e., we have a
basis ℐ such that 𝑥ℐ = 𝐴ℐ

−1𝑏 ≥ 0)

(Seems like a big assumption, but we can relax this)

We would like to adjust this point so as to further decrease the cost, but
how do we go about adjusting it?

29

A single step of the simplex algorithm (cont)

Suppose we want to adjust 𝑥 by setting 𝑥F ← 𝛼 for some 𝑗 ∉ ℐ (i.e., so
𝑥F = 0 initially), in hopes of decreasing the objective

We cannot only change 𝑥F ← 𝛼, because this new point would not
satisfy the linear equalities

𝐴ℐ𝑥ℐ = 𝑏 ⟹ 𝐴ℐ𝑥ℐ + 𝛼𝐴F ≠ 𝑏

Instead, we need to adjust 𝑥ℐ by some 𝛼𝑑ℐ to ensure that the equality
constraint still holds

𝐴ℐ 𝑥ℐ + 𝛼𝑑ℐ + 𝛼𝐴F = 𝑏
⟹ 𝛼𝐴ℐ𝑑ℐ = 𝑏 − 𝐴ℐ𝑥ℐ − 𝛼𝐴F
⟹ 𝛼𝐴ℐ𝑑ℐ = −𝛼𝐴F because 𝐴ℐ𝑥ℐ = 𝑏
⟹ 𝑑ℐ = −𝐴ℐ

−1𝐴F

30

A single step of the simplex algorithm (cont)

Now suppose we adjust 𝑥ℐ ← 𝑥ℐ + 𝛼𝑑ℐ and 𝑥F ← 𝛼, how does this
change the objective of our optimization problem?

𝑐+ 𝑥 ← 𝑐+ 𝑥 + 𝛼 𝑐F + 𝑐ℐ
+ 𝑑ℐ

In other words, setting 𝑥F to be 𝛼 will increase objective by 𝛼𝑐F̅ where
𝑐F̅ = 𝑐F − 𝑐ℐ

+ 𝐴ℐ
−1𝐴F

Thus, as long as 𝑐F̅ is negative, it is a “good idea” to adjust 𝑥F in this
manner (if more than one 𝑐F̅ is negative, we could pick any)

If no 𝑐F̅ < 0, we have found a solution!

31

A single step of the simplex algorithm (cont)

Final question: how big of a step 𝑥F ← 𝛼 should we take?

If all 𝑑ℐ ≥ 0, we are in “luck”, we can decrease the optimization objective
arbitrarily without leaving the feasible region (i.e., an unbounded problem)

But if some element 𝑑6 < 0, for 𝑖 ∈ ℐ, we can take at most a step of size:
𝑥6 + 𝛼𝑑6 = 0 ⟹ 𝛼 = −𝑥6/𝑑6

or we would leave the feasible set

So, take the biggest step we can while keeping 𝑥 positive, i.e., find:
𝑖⋆ = argmin

6∈ℐ:PQ<0
−𝑥6/𝑑6

and take step such that 𝑥6⋆ = 0 (at this point, 𝑗 enters ℐ and 𝑖⋆ leaves)

32

Simplex algorithm

Given index set ℐ such that 𝑥ℐ = 𝐴ℐ
−1𝑏 ≥ 0

Repeat:

1. Find 𝑗 for which 𝑐F̅ = 𝑐F − 𝑐ℐ
+ 𝐴ℐ

−1𝐴F < 0 (if none exists, return 𝑥)

2. Compute step direction 𝑑ℐ = −𝐴ℐ
−1𝐴F and determine index to

remove (or return unbounded if 𝑑ℐ ≥ 0)
𝑖⋆ = argmin

6∈ℐ:PQ<0
−𝑥6/𝑑6

4. Update index set: ℐ ← ℐ − 𝑖⋆ ∪ {𝑗}

33

Illustration of simplex algorithm

Polytope from our example:

34

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = 3,4
𝑥ℐ = 𝐴ℐ

−1𝑏 = 9
6

𝑐1̅,2 = (−2,−1)

𝑑ℐ = −𝐴ℐ
−1𝐴1 = −3

−1
𝑖⋆ = argmin

6∈{3,4}
{3: 9/3 , 4: 6/1} = 3

ℐ = ℐ − 3 ∪ {1}

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Choosing 𝑗 = 1:

Illustration of simplex algorithm

Polytope from our example:

35

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = 1,4
𝑥ℐ = 𝐴ℐ

−1𝑏 = 3
3

𝑐2̅,4 = (−1/3,2/3)

𝑑ℐ = −𝐴ℐ
−1𝐴1 = −1/3

−5/3
𝑖⋆ = argmin

6∈{1,4}
{1: 9 , 4: 9/5} = 3

ℐ = ℐ − 4 ∪ {2}

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Choosing 𝑗 = 2:

Illustration of simplex algorithm

Polytope from our example:

36

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = 1,2
𝑥ℐ = 𝐴ℐ

−1𝑏 = 2.4
1.8

𝑐3̅,4 = (0.6, 0.2)

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Since all 𝑐F̅ are positive, we are done

Simplex solves linear programs

Theorem: the simplex algorithm is guaranteed to find a globally optimal
solution to a linear program

Proof: (ignoring some possible degenerate cases)

If simplex returns, then it has found a point where we cannot improve the
objective locally; since linear programs are convex, this is a global
optimum

Because the objective of the simplex improves at each iteration, and
since there are a finite (but exponential) number of vertices in the
polytope, the algorithm must return after a finite number of steps

37

Poll: simplex complexity

What is the complexity of a single iteration of the simplex algorithm?
(remember that matrix 𝐴 ∈ ℝ1×0)

1. 𝑂 𝑚𝑛

2. 𝑂 𝑚2𝑛

3. 𝑂 𝑚3 + 𝑚𝑛

4. 𝑂 𝑚3 + 𝑚2𝑛

5. 𝑂 𝑚2 + 𝑚𝑛

38

Numerical considerations

Note that the above algorithm is described in terms of exact math

When implemented in floating point arithmetic, we’ll often get entries like
𝑐F̅, 𝑑6 ∈ −10−15, 10−15

When comparing to zero, or comparing “ties” (see next slide), we need to
account for this

In practice, set these near-zero elements to zero or compare to ±10−12

39

Degeneracy

More than 𝑚 constraints may intersect at a given point, at such a corner
the simple solution will have 𝑥6 = 0 for some 𝑖 ∈ ℐ

To make progress from such points, we may need to take a step size
𝛼 = 0 (i.e., remain at the same point, but switch which columns are in ℐ)

40

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

x2 ≤ 3

Handling degeneracy

Simplex will still work with zero step sizes, but we need to take care not
to “cycle” repeatedly over the same indices

A similar issue can occur when determining which 𝑖⋆ exists the set ℐ (i.e.,
if more than one 𝑥6 becomes zero at the same time)

A simple approach to fix these problems, Bland’s rule
1. At each step, choose smallest 𝑗 such that 𝑐F̅ < 0
2. For variables 𝑥6 that could exit set ℐ choose the smallest 𝑖⋆

Alternatively, perturb 𝑏 by some small noise and then solve, then resolve
with exact 𝑏 and the optimal index set

41

Finding feasible solutions

We assumed an initial feasible point, i.e. ℐ such that 𝐴ℐ
−1𝑏 ≥ 0

To find such a point (in cases where it is not easy to construct one, we
introduce variables 𝑧 ∈ ℝ1 and solve auxiliary problem

minimize
!,V

1+ 𝑧
subject to 𝐴𝑥 + 𝑧 = 𝑏
 𝑥, 𝑧 ≥ 0

where for all 𝑏6 < 0 we replace constraint 𝑎6
+ 𝑥 = 𝑏6 with −𝑎6

+ 𝑥 = −𝑏6

Initial feasible solution given by 𝑥 = 0, 𝑧 = 𝑏, and if final solution has 𝑧 =
0, we have found a feasible solution to the original problem

42

Revised simplex

Simplex algorithm require inverting 𝐴ℐ at each iteration: naive
implementation would re-invert matrix at every iteration

Revised simplex algorithm directly maintains/updates the inverse 𝐴ℐ
−1

Key idea is the Sherman-Morrison inversion formula, for an invertible
matrix 𝐶 ∈ ℝ0×0 and vectors 𝑢, 𝑣 ∈ ℝ0

𝐶 + 𝑢𝑣+ −1 = 𝐶−1 − 𝐶−1𝑢𝑣+ 𝐶−1

1 + 𝑣+ 𝐶−1𝑢

Each update overwrites some column 𝐴ℐ [with 𝐴F, i.e.,
𝐴ℐ ← 𝐴ℐ + 𝐴F − 𝐴ℐ [𝑒[

+

43

Simplex tableau

If you have been taught the simplex algorithm before (or if you read
virtually any book on the subject), you will probably see tables that look
like this:

This is the simplex tableau, and it is just an organization of all the relevant
quantities in the simplex algorithm:

along with a set of operations for performing the updates (essentially
doing the same this as the Sherman-Morrison formula)

44

6.6 0 0 0.2 0.6
1 2.4 1 0 -0.2 0.4
2 1.8 0 1 0.6 -0.2

−𝑐+ 𝑥 𝑐+̅ = 𝑐+ − 𝑐ℐ
+ 𝐴ℐ

−1𝐴
ℐ 𝑥ℐ = 𝐴ℐ

−1𝑏 𝐴ℐ
−1𝐴

Outline

Introduction

Linear programming

Simplex algorithm

Duality

Dual simplex

45

Lagrangian duality

Duality is an extremely powerful concept in convex optimization in general
(we consider it first for linear programs, but then highlight general case)

Given a linear program in standard form
 minimize

!
 𝑐+ 𝑥

subject to 𝐴𝑥 = 𝑏
 𝑥 ≥ 0

we define a function called the Lagrangian, which has the form
ℒ 𝑥, 𝑦, 𝑧 = 𝑐+ 𝑥 + 𝑦+ 𝐴𝑥 − 𝑏 − 𝑧+ 𝑥

where 𝑦 ∈ ℝ1, 𝑧 ∈ ℝ0 are called dual variables for the constraints
𝐴𝑥 = 𝑏 and 𝑥 ≥ 0 respectively

46

Min-max formulation

First note that

max
_,V≥0

ℒ 𝑥, 𝑦, 𝑧 = {𝑐+ 𝑥 if 𝐴𝑥 = 𝑏, 𝑥 ≥ 0
∞ otherwise

Can write the original optimization problem (called the primal problem) as
min

!
max
_,V≥0

ℒ 𝑥, 𝑦, 𝑧

We are effectively using the min/max setup to express the same
constraints as in the standard form problem

Alternatively, we could flip the order of the min/max to obtain what is
called the dual problem

max
_,V≥0

min
!

ℒ 𝑥, 𝑦, 𝑧

47

Weak and strong duality

Denoting the optimal solutions to the primal and dual problems as 𝑝⋆ and
𝑑⋆ respectively, we immediately have the following (called weak duality)

𝑑⋆ = max
_,V≥0

min
!

ℒ 𝑥, 𝑦, 𝑧 ≤ min
!

max
_,V≥0

ℒ 𝑥, 𝑦, 𝑧 = 𝑝⋆

(if we minimize over 𝑥 first, and then maximize over 𝑦, 𝑧 this is always
larger than if we maximize over 𝑦, 𝑧 first and then minimize over 𝑥)

A remarkable property: for linear programs, we actually have 𝑝⋆ = 𝑑⋆

(called strong duality), and the simplex algorithm actually gives us
solutions for both the primal and dual problems

Also crucial: any feasible solution to dual problem provides a lower bound
on the optimal primal solution

48

Dual problem for standard form LP

For the standard form LP, note that the inner minimization is given by
min

!
ℒ 𝑥, 𝑦, 𝑧 = min

!
𝑐+ 𝑥 + 𝑦+ 𝐴𝑥 − 𝑏 − 𝑧+ 𝑥

 = {−𝑏+ 𝑦 if 𝐴+ 𝑦 + 𝑐 − 𝑧 = 0
−∞ otherwise

Thus, we can write the dual problem as

(a linear program in inequality form!)

49

maximize
_,V

−𝑏+ 𝑦
subject to 𝐴+ 𝑦 + 𝑐 = 𝑧
 𝑧 ≥ 0

maximize
_

−𝑏+ 𝑦
subject to −𝐴+ 𝑦 ≤ 𝑐≡

Strong duality for LPs

Theorem: for linear programs, strong duality holds (𝑝⋆ = 𝑑⋆) and the
simplex algorithm gives solutions 𝑥⋆ and 𝑦⋆

Proof: When simplex algorithm terminates, we have 𝑥ℐ
⋆ = 𝐴ℐ

−1𝑏 ≥ 0 and
𝑐 ̅= 𝑐 − 𝐴+ 𝐴ℐ

−+ 𝑐ℐ ≥ 0 (no direction of cost decrease). Let
𝑦⋆ = −𝐴ℐ

−+ 𝑐ℐ be a potential solution to the dual problem. Then we have
𝑐 + 𝐴+ 𝑦⋆ ≥ 0

(i.e., 𝑦⋆ is dual feasible) and
𝑝⋆ = 𝑐+ 𝑥⋆ = 𝑐ℐ

+ 𝐴ℐ
−1𝑏 = −𝑦⋆+ 𝑏

i.e., 𝑦⋆ is an optimal dual solution, and 𝑑⋆ = 𝑝⋆

50

Duality: general case

General constrained optimization problem
 minimize

!
 𝑓(𝑥)

subject to 𝑔6 𝑥 ≤ 0, 𝑖 = 1,… , 𝑚
 ℎ6 𝑥 = 0, 𝑖 = 1,… , 𝑝

Lagrangian given by

ℒ 𝑥, 𝑦, 𝑧 = 𝑓 𝑥 + ∑ 𝑧6𝑔6 𝑥 + ∑ 𝑦6ℎ6 𝑥
f

6=1

1

6=1

Analogous to before, we have:

ℒ 𝑥, 𝑦, 𝑧 = {𝑓(𝑥) 𝑥 feasible
∞ otherwise

𝑝⋆ = min
!

max
_,V≥0

ℒ 𝑥, 𝑦, 𝑧
51

KKT conditions

Because optimal 𝑥⋆, 𝑦⋆, 𝑧⋆ must have 𝑓 𝑥⋆ = ℒ(𝑥⋆, 𝑦⋆, 𝑧⋆) and
𝛻!ℒ 𝑥⋆, 𝑦⋆, 𝑧⋆ = 0, we write optimality conditions for the problem as:

1. 𝑔6 𝑥⋆ ≤ 0, 𝑖 = 1,… , 𝑚
2. ℎ6 𝑥⋆ = 0, 𝑖 = 1,… , 𝑝
3. 𝑧6

⋆ ≥ 0, i = 1,… , 𝑚
4. ∑ 𝑧6

⋆𝑔6 𝑥⋆ = 0 ⟹ 𝑧6
⋆𝑔6 𝑥⋆ = 0, 𝑖 = 1,… , 𝑚1

6=1

5. 𝛻!𝑓 𝑥⋆ + ∑ 𝑧6
⋆𝛻!𝑔6 𝑥⋆1

6=1 + ∑ 𝑦6
⋆𝛻!ℎ6 𝑥⋆f

6=1 = 0

These are called the Karush-Kuhn-Tucker (KKT) equations, and they
provide necessary and sufficient conditions for optimal solutions to
convex optimization problems

52

KKT conditions for linear program

For a standard for linear program, the KKT conditions take the form
1. 𝑥 ≥ 0
2. 𝐴𝑥 = 𝑏
3. 𝑧 ≥ 0
4. 𝑥 ∘ 𝑧 = 0 (where ∘ denotes elementwise multiplication)
5. 𝑐 + 𝐴+ 𝑦 − 𝑧 = 0

A set of non-linear equations due to the condition 𝑥 ∘ 𝑧 = 0

Interior point primal dual algorithms (state of the art for solving single
large-scale LPs): use Newton’s method to find a root of (smoothed
version of) these nonlinear equations, smoothing complementarity
condition to 𝑥 ∘ 𝑧 = 𝑡1 and taking 𝑡 → 0

53

Outline

Introduction

Linear programming

Simplex algorithm

Duality

Dual simplex

54

Dual simplex algorithm

In light of discussion on duality, simplex algorithm can be viewed in the
following manner:

1. At all steps, maintain primal feasible solution 𝑥ℐ = 𝐴ℐ
−1𝑏 ≥ 0

2. Work to obtain dual feasible solution 𝑦 = −𝐴ℐ
−+ 𝑐ℐ, i.e. such that

− 𝐴+ 𝑦 ≤ 𝑐

There is an alternative approach, called the dual simplex algorithm, that
works in the opposite manner

1. At all steps, maintain dual feasible solution 𝑦 = −𝐴ℐ
−+ 𝑐ℐ such

that −𝐴+ 𝑦 ≤ 𝑐
2. Work to obtain primal feasible solution 𝑥ℐ = 𝐴ℐ

−1𝑏 ≥ 0

55

Outline of dual simplex algorithm

Without derivation (it is similar to standard simplex algorithm), dual
simplex takes the following form

Given set of indices ℐ such that 𝑦 = −𝐴ℐ
−+ 𝑐ℐ satisfies −𝐴+ 𝑦 ≤ 𝑐

Repeat:
1. Letting 𝑥ℐ = 𝐴ℐ

−1𝑏, find some 𝑘 such that 𝑥ℐm
< 0 (if no index

exists, we are done)
2. Let 𝑣 = 𝐴+ 𝐴ℐ

−+
[, and determine index to add

𝑗⋆ = min
F∉ℐ,no<0

−𝑐6̅/𝑣6

3. Update index set
ℐ → ℐ − {ℐ[} ∪ {𝑗⋆}

56

Incrementally adding constraints

In general, little reason to prefer dual simplex over original simplex

Advantage comes when we can easily find a dual feasible solution, but
not a primal feasible solution, arises for instance when we to incrementally
add constraints to primal problem

Consider LP in standard form, and suppose we have an optimal
primal/dual solution (𝑥⋆, 𝑦⋆)

Now suppose we want to add constraint 𝑔+ 𝑥 ≤ ℎ, adding variable 𝑥0+1
as slack, our new equality constraint in standard form becomes

𝐴 0
𝑔+ 1

𝑥
𝑥0+1

= 𝑏
ℎ

57

Dual feasible solution for added constraint

Not easy to see how we can modify primal solution 𝑥⋆ to satisfy new
equality constraint

But it is trivial to see that 𝑦⋆

0 is a dual feasible solution:

𝐴+ 𝑔
0 1

𝑦⋆

0 ≤ 𝑐
 0

Thus, we can initialize dual simplex with this starting point (“close” to
previous solution), which often takes much less time to solve than starting
without a good initial solution

This is particularly important in domains like integer programming, where
we will modify LPs by adding one additional constraint at a time

58

