

Graduate AI

Lecture 22:

Game Theory IV

Teachers:

Zico Kolter

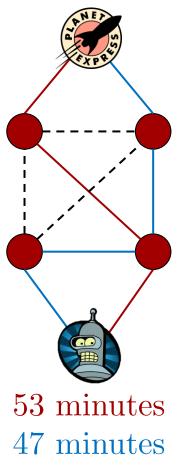
Ariel Procaccia (this time)

REMINDER: THE MINIMAX THEOREM

- Theorem [von Neumann, 1928]: Every 2-player zero-sum game has a unique value v such that:
 - $_{\circ}$ Player 1 can guarantee value at least \boldsymbol{v}
 - $_{\circ}$ Player 2 can guarantee loss at most v
- We will prove the theorem via no-regret learning

HOW TO REACH YOUR SPACESHIP

- Each morning pick one of *n* possible routes
- Then find out how long each route took
- Is there a strategy for picking routes that does almost as well as the best fixed route in hindsight?

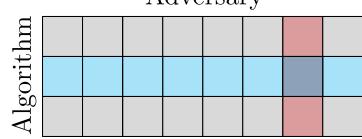


• • •

THE MODEL

• View as a matrix (maybe infinite #columns)

Adversary



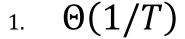
- Algorithm picks row, adversary column
- Alg pays cost of (row,column) and gets column as feedback
- Assume costs are in [0,1]

THE MODEL

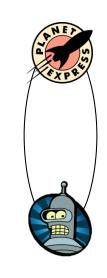
- Define average regret in T time steps as (average per-day cost of alg) (average per-day cost of best fixed row in hindsight)
- No-regret algorithm: regret $\rightarrow 0$ as $T \rightarrow \infty$
- Not competing with adaptive strategy, just the best fixed row

EXAMPLE

- Algorithm 1: Alternate between U and D
- Poll 1: What is algorithm 1's worst-case average regret?



- 2. $\Theta(1)$
- $\Theta(T)$

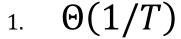


Adversary

Algorithm	1	0
Algor	0	1

EXAMPLE

- Algorithm 2: Choose action that has lower cost so far
- Poll 2: What is algorithm 2's worst-case average regret?



- 2. $\Theta(1/\sqrt{T})$
- 3. $\Theta(1/\log T)$
- 4. $\Theta(1)$

Adversary

lgorithm	1	0
Algor	0	1

What can we say
more generally
about deterministic
algorithms?

USING EXPERT ADVICE

- Want to predict the stock market
- Solicit advice from n experts
 - Expert = someone with an opinion

Day	Expert 1	Expert 2	Expert 3	Charlie
1	_	_	+	+
2	+	_	+	_
•••	•••	•••	•••	•••



Truth		
+		
I		
•••		

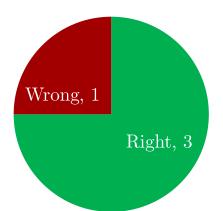
• Can we do as well as best in hindsight?

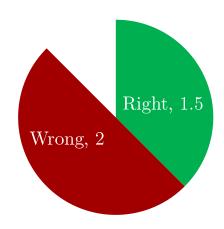
WEIGHTED MAJORITY

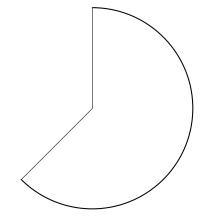
- Idea: Experts are penalized every time they make a mistake
- Weighted Majority Algorithm:
 - Start with all experts having weight 1
 - Predict based on weighted majority vote
 - Penalize mistakes by cutting weight in half

	Expert 1	Expert 2	Expert 3	Charlie
Weights	1	1	1	1
Prediction	_	+	+	+
Weights	0.5	1	1	1
Prediction	+	+	_	_
Weights	0.5	1	0.5	0.5

Alg	Truth







WEIGHTED MAJORITY: ANALYSIS

- M = # mistakes we've made so far
- m = # mistakes of best expert so far
- W = total weight (starts at n)
- For each mistake, W drops by at least 25% \Rightarrow after M mistakes: $W \le n(3/4)^M$
- Weight of best expert is $(1/2)^m$

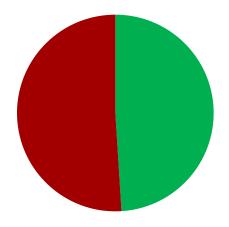
$$\left(\frac{1}{2}\right)^m \le n\left(\frac{3}{4}\right)^M \Rightarrow \left(\frac{4}{3}\right)^M \le n2^m \Rightarrow M \le 2.5(m + \lg n)$$

RANDOMIZED WEIGHTED MAJORITY

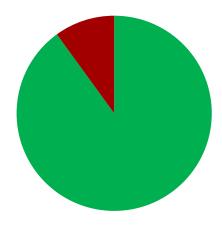
- Randomized Weighted Majority Algorithm:
 - Start with all experts having weight 1
 - Predict proportionally to weights: the total weight of + is w_+ and the total weight of is w_- , predict + with probability $\frac{w_+}{w_+ + w_-}$ and
 - with probability $\frac{w_-}{w_+ + w_-}$
 - Penalize mistakes by removing ϵ fraction of weight

RANDOMIZED WEIGHTED MAJORITY

Idea: smooth out the worst case



The worst-case is \sim 50-50: now we have a 50% chance of getting it right



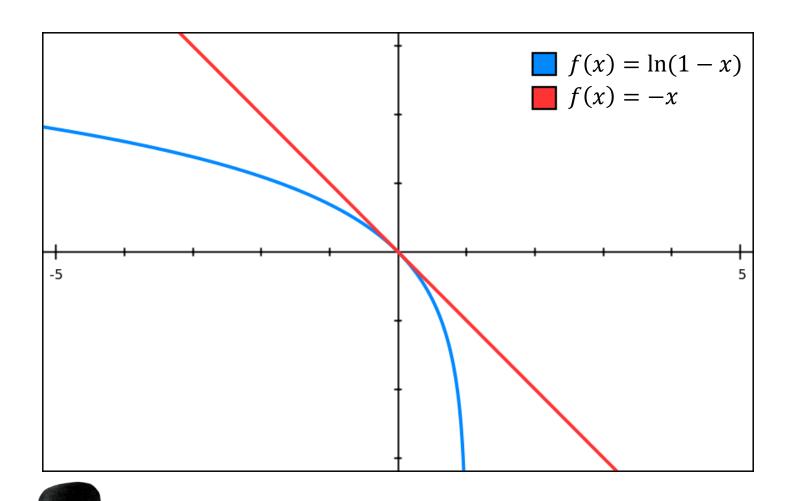
What about 90-10? We're very likely to agree with the majority

ANALYSIS

- At time t we have a fraction F_t of weight on experts that made a mistake
- Prob. F_t of making a mistake, remove ϵF_t fraction of total weight
- $W_{final} = n \prod_{t} (1 \epsilon F_t)$
- $\ln W_{final} = \ln n + \sum_{t} \ln(1 \epsilon F_t)$ $\leq \ln n - \epsilon \sum_t F_t = \ln n - \epsilon M$

 $\ln(1-x) \le -x$ (next slide)

ANALYSIS



ANALYSIS

- Weight of best expert is $W_{hest} = (1 \epsilon)^m$
- $\ln n \epsilon M \ge \ln W_{final} \ge \ln W_{best} = m \ln(1 \epsilon)$
- By setting $\epsilon = \sqrt{\ln n/m}$ and solving, we get $M < m + 2\sqrt{m} \ln n$
- Since $m \le T$, $M \le m + 2\sqrt{T \ln n}$
- Average regret is $(2\sqrt{T \ln n})/T \to 0$

MORE GENERALLY

- Each expert is an action with cost in [0,1]
- Run Randomized Weighted Majority
 - Choose expert i with probability w_i/W
 - Update weights: $w_i \leftarrow w_i(1 c_i \epsilon)$
- Same analysis applies:
 - Our expected cost: $\sum_i c_i w_i / W$
 - Fraction of weight removed: $\epsilon \sum_i c_i w_i / W$
 - \circ So, fraction removed = $\epsilon \cdot (\text{our cost})$

PROOF OF THE MINIMAX THEOREM

- In a zero-sum game G, denote:
 - \circ V_C is the smallest reward the column player can guarantee if he commits first
 - \circ V_R is the largest reward the row player can guarantee if he commits first
- Obviously $V_C \geq V_R$, and the theorem says equality holds
- Assume for contradiction that $V_C > V_R$
- Scale matrix so that payoffs to row player are in [-1,0], and let $V_C = V_R + \delta$

PROOF OF THE MINIMAX THEOREM

- Suppose the game is played repeatedly; in each round the row player commits, and the column player responds
- Let the row player play RWM, and let the column player respond optimally to current mixed strategy
- After T steps
 - ALG \geq best row in hindsight $-2\sqrt{T \log n}$
 - $_{\circ}$ ALG $\leq T \cdot V_{R}$

PROOF OF THE MINIMAX THEOREM

- Claim: Best row in hindsight $\geq T \cdot V_C$
 - \circ Suppose the column player played s_t in round t
 - Define a mixed strategy y that plays each s_t with probability 1/T (multiplicities possible)
 - \circ Let x be row's best response to y

$$V_C \le u_1(x,y) = \frac{1}{T}u_1(x,s_1) + \dots + \frac{1}{T}u_1(x,s_T)$$

- $u_1(x, s_1) + \dots + u_1(x, s_T) \le \text{best row in hindsight} \blacksquare$
- It follows that $T \cdot V_R \ge T \cdot V_C 2\sqrt{T \log n}$
- $\delta T \leq 2\sqrt{T \log n}$ contradiction for large T

SUMMARY

- Terminology:
 - Regret
 - No-regret learning
- Algorithms:
 - Randomized weighted majority
- Big ideas:
 - It is possible to achieve no-regret learning guarantees!
 - Connections between game theory and learning theory

