

# Graduate AI

Lecture 22:

Game Theory IV

Teachers:

Zico Kolter

Ariel Procaccia (this time)

### REMINDER: THE MINIMAX THEOREM

- Theorem [von Neumann, 1928]: Every 2-player zero-sum game has a unique value v such that:
  - $_{\circ}$  Player 1 can guarantee value at least  $\boldsymbol{v}$
  - $_{\circ}$  Player 2 can guarantee loss at most v
- We will prove the theorem via no-regret learning



### HOW TO REACH YOUR SPACESHIP

- Each morning pick one of *n* possible routes
- Then find out how long each route took
- Is there a strategy for picking routes that does almost as well as the best fixed route in hindsight?



• • •

### THE MODEL

• View as a matrix (maybe infinite #columns)

Adversary



- Algorithm picks row, adversary column
- Alg pays cost of (row,column) and gets column as feedback
- Assume costs are in [0,1]

#### THE MODEL

- Define average regret in T time steps as (average per-day cost of alg) (average per-day cost of best fixed row in hindsight)
- No-regret algorithm: regret  $\rightarrow 0$  as  $T \rightarrow \infty$
- Not competing with adaptive strategy, just the best fixed row

### EXAMPLE

- Algorithm 1: Alternate between U and D
- Poll 1: What is algorithm 1's worst-case average regret?



- 2.  $\Theta(1)$
- $\Theta(T)$



#### Adversary

| Algorithm | 1 | 0 |
|-----------|---|---|
| Algor     | 0 | 1 |

### EXAMPLE

- Algorithm 2: Choose action that has lower cost so far
- Poll 2: What is algorithm 2's worst-case average regret?



- 2.  $\Theta(1/\sqrt{T})$
- 3.  $\Theta(1/\log T)$
- 4.  $\Theta(1)$



#### Adversary

| lgorithm | 1 | 0 |
|----------|---|---|
| Algor    | 0 | 1 |

What can we say
more generally
about deterministic
algorithms?



### USING EXPERT ADVICE

- Want to predict the stock market
- Solicit advice from n experts
  - Expert = someone with an opinion

| Day | Expert 1 | Expert 2 | Expert 3 | Charlie |
|-----|----------|----------|----------|---------|
| 1   | _        | _        | +        | +       |
| 2   | +        | _        | +        | _       |
| ••• | •••      | •••      | •••      | •••     |



| Truth |  |  |
|-------|--|--|
| +     |  |  |
| I     |  |  |
| •••   |  |  |

• Can we do as well as best in hindsight?

### WEIGHTED MAJORITY

- Idea: Experts are penalized every time they make a mistake
- Weighted Majority Algorithm:
  - Start with all experts having weight 1
  - Predict based on weighted majority vote
  - Penalize mistakes by cutting weight in half

|            | Expert 1 | Expert 2 | Expert 3 | Charlie |
|------------|----------|----------|----------|---------|
| Weights    | 1        | 1        | 1        | 1       |
| Prediction | _        | +        | +        | +       |
| Weights    | 0.5      | 1        | 1        | 1       |
| Prediction | +        | +        | _        | _       |
| Weights    | 0.5      | 1        | 0.5      | 0.5     |

| Alg | Truth |
|-----|-------|
|     |       |











## WEIGHTED MAJORITY: ANALYSIS

- M = # mistakes we've made so far
- m = # mistakes of best expert so far
- W = total weight (starts at n)
- For each mistake, W drops by at least 25%  $\Rightarrow$  after M mistakes:  $W \le n(3/4)^M$
- Weight of best expert is  $(1/2)^m$

$$\left(\frac{1}{2}\right)^m \le n\left(\frac{3}{4}\right)^M \Rightarrow \left(\frac{4}{3}\right)^M \le n2^m \Rightarrow M \le 2.5(m + \lg n)$$



#### RANDOMIZED WEIGHTED MAJORITY

- Randomized Weighted Majority Algorithm:
  - Start with all experts having weight 1
  - Predict proportionally to weights: the total weight of + is  $w_+$  and the total weight of is  $w_-$ , predict + with probability  $\frac{w_+}{w_+ + w_-}$  and
    - with probability  $\frac{w_-}{w_+ + w_-}$
  - Penalize mistakes by removing  $\epsilon$  fraction of weight

### RANDOMIZED WEIGHTED MAJORITY

Idea: smooth out the worst case



The worst-case is  $\sim$ 50-50: now we have a 50% chance of getting it right



What about 90-10? We're very likely to agree with the majority

### ANALYSIS

- At time t we have a fraction  $F_t$  of weight on experts that made a mistake
- Prob.  $F_t$  of making a mistake, remove  $\epsilon F_t$ fraction of total weight
- $W_{final} = n \prod_{t} (1 \epsilon F_t)$
- $\ln W_{final} = \ln n + \sum_{t} \ln(1 \epsilon F_t)$  $\leq \ln n - \epsilon \sum_t F_t = \ln n - \epsilon M$

 $\ln(1-x) \le -x$ (next slide)

# ANALYSIS



### ANALYSIS

- Weight of best expert is  $W_{hest} = (1 \epsilon)^m$
- $\ln n \epsilon M \ge \ln W_{final} \ge \ln W_{best} = m \ln(1 \epsilon)$
- By setting  $\epsilon = \sqrt{\ln n/m}$  and solving, we get  $M < m + 2\sqrt{m} \ln n$
- Since  $m \le T$ ,  $M \le m + 2\sqrt{T \ln n}$
- Average regret is  $(2\sqrt{T \ln n})/T \to 0$

### MORE GENERALLY

- Each expert is an action with cost in [0,1]
- Run Randomized Weighted Majority
  - Choose expert i with probability  $w_i/W$
  - Update weights:  $w_i \leftarrow w_i(1 c_i \epsilon)$
- Same analysis applies:
  - Our expected cost:  $\sum_i c_i w_i / W$
  - Fraction of weight removed:  $\epsilon \sum_i c_i w_i / W$
  - $\circ$  So, fraction removed =  $\epsilon \cdot (\text{our cost})$

#### PROOF OF THE MINIMAX THEOREM

- In a zero-sum game G, denote:
  - $\circ$   $V_C$  is the smallest reward the column player can guarantee if he commits first
  - $\circ$   $V_R$  is the largest reward the row player can guarantee if he commits first
- Obviously  $V_C \geq V_R$ , and the theorem says equality holds
- Assume for contradiction that  $V_C > V_R$
- Scale matrix so that payoffs to row player are in [-1,0], and let  $V_C = V_R + \delta$

#### PROOF OF THE MINIMAX THEOREM

- Suppose the game is played repeatedly; in each round the row player commits, and the column player responds
- Let the row player play RWM, and let the column player respond optimally to current mixed strategy
- After T steps
  - ALG  $\geq$  best row in hindsight  $-2\sqrt{T \log n}$
  - $_{\circ}$  ALG  $\leq T \cdot V_{R}$

#### PROOF OF THE MINIMAX THEOREM

- Claim: Best row in hindsight  $\geq T \cdot V_C$ 
  - $\circ$  Suppose the column player played  $s_t$  in round t
  - Define a mixed strategy y that plays each  $s_t$  with probability 1/T (multiplicities possible)
  - $\circ$  Let x be row's best response to y

$$V_C \le u_1(x,y) = \frac{1}{T}u_1(x,s_1) + \dots + \frac{1}{T}u_1(x,s_T)$$

- $u_1(x, s_1) + \dots + u_1(x, s_T) \le \text{best row in hindsight} \blacksquare$
- It follows that  $T \cdot V_R \ge T \cdot V_C 2\sqrt{T \log n}$
- $\delta T \leq 2\sqrt{T \log n}$  contradiction for large T



### SUMMARY

- Terminology:
  - Regret
  - No-regret learning
- Algorithms:
  - Randomized weighted majority
- Big ideas:
  - It is possible to achieve no-regret learning guarantees!
  - Connections between game theory and learning theory

