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REMINDER: THE MINIMAX THEOREM

e Theorem |[von Neumann, 1928]:
Every 2-player zero-sum game
has a unique value v such that:

- Player 1 can guarantee value at
least v

o Player 2 can guarantee loss at
most v

* We will prove the theorem via
no-regret learning
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HOW TO REACH YOUR SPACESHIP

* Fach morning pick one of n
possible routes

* Then find out how long each
route took

* Is there a strategy for
picking routes that does
almost as well as the best 59 minutes
fixed route in hindsight? 47 minutes
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THE MODEL

View as a matrix (maybe infinite

#columns) Adversary

Algorithm

Algorithm picks row, adversary column

Alg pays cost of (row,column) and gets

column as feedback

Assume costs are in [0,1]
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THE MODEL

* Define average regret in T time steps as
(average per-day cost of alg) — (average
per-day cost of best fixed row in hindsight)

* No-regret algorithm: regret— 0 as T — oo

 Not competing with adaptive strategy, just
the best fixed row
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EXAMPLE

* Algorithm 1: Alternate between
U and D

* Poll 1: What is algorithm 1°s
worst-case average regret?

1. 0 (1 / T) Adversary
2. O(1) 211 0
3. O(T) E

4. OO % 0 !
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EXAMPLE

* Algorithm 2: Choose action that
has lower cost so far

* Poll 2: What is algorithm 2’s
worst-case average regret?

1. 9(1/ T) Adversary
2. 0(1/VT) El 11 o
;. 0(1/logT) E

. (1) = 0!
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What can we say
more generally
about deterministic
algorithms?
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USING EXPERT ADVIC:

« Want to predict the stock market

* Solicit advice from n experts

o Expert = someone with an opinion

Day Expert 1 Expert2 Expert3  Charlie




WEIGHTED MAJORITY

e Idea: Experts are penalized every time
they make a mistake

* Weighted Majority Algorithm:
o otart with all experts having weight 1

o Predict based on weighted majority vote

o Penalize mistakes by cutting weight in

half
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Expert 1 Expert 2 Expert 3 Charlie

Weights

Prediction

Weights

Prediction

Weights
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WEIGHTED MAJORITY: ANALYSIS

e M = #mistakes we've made so far
 m = #mistakes of best expert so far
« W = total weight (starts at n)

* For each mistake, W drops by at least 25%
= after M mistakes: W < n(3/4)M

* Weight of best expert is (1/2)™

1’m 3M A\M
(E) Sn(Z) =>(§) <n2m=>M < 2.5(m+1gn)
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RANDOMIZED WEIGHTED MAJORITY

 Randomized Weighted Majority
Algorithm:

o otart with all experts having weight 1

o Predict proportionally to weights: the total
weight of + is w, and the total weight of —

Wy

is w_, predict + with probability ~ and

.|_+W_
W_

— with probability —
+

w_

o Penalize mistakes by removing € fraction of
weight
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RANDOMIZED WEIGHTED MAJORITY

Idea: smooth out the worst case

The worst-case is What about 90-107
~950-50: now we have We're very likely to
a 50% chance of agree with the

getting it right majority
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ANALYSIS

At time t we have a fraction F; of weight
on experts that made a mistake

* Prob. F; of making a mistake, remove €F;
fraction of total weight

* Wrina = n[l.(1 - eF)
* InWsing = Inn+ 3, In(1 — €F)
<lnn-e€);F=Ilnn—eM

!

In(1—-—x) <-—x
(next slide)

- & fg 15780 Spl‘il’lg 2018: Lecture 22 Carnegie Mellon University 15



ANALYSIS

B f(x) =In(1—x)
B f(x) =—x
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ANALYSIS

» Weight of best expert is Wyoer = (1 — €)™
* Inn—eM = InWripng = InWyeee = min(l — €)

* By setting € = \/ Inn/m and solving, we get
M<m+2Vmlnn
e Sincem<T,M<m+2VTlnn

* Average regret is (2\/T In n)/T -0
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MORE GENERALLY

» Each expert is an action with cost in [0,1]

* Run Randomized Weighted Majority
o Choose expert i with probability w; /W
o Update weights: w; « w;(1 — c;€)
* Same analysis applies:
o Our expected cost: Y. ; c;w; /W
o Fraction of weight removed: € ) ; c;w; /W

o So, fraction removed = € - (our cost)
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PROOF OF THE MINIMAX THEOR.

&
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* In a zero-sum game G, denote:

o V¢ is the smallest reward the column player can
guarantee if he commits first

o Vg is the largest reward the row player can
guarantee if he commits first

* Obviously V. = Vp, and the theorem says
equality holds

* Assume for contradiction that V. > Vy

* Scale matrix so that payotfs to row player are in
|—1,0], and let Vo, =V, + 6
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PROOF OF THE MINIMAX THEOREM

* Suppose the game is played repeatedly; in each
round the row player commits, and the column
player responds

* Let the row player play RWM, and let the column
player respond optimally to current mixed
strategy

o After T steps

o ALG = best row in hindsight —2,/T logn
O ALG S T * VR
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PROOF OF THE MINIMAX THEOR.

* Claim: Best row in hindsight =T -V

o Suppose the column player played s; in round t
o Define a mixed strategy y that plays each s; with
probability 1/T (multiplicities possible)
o Let x be row’s best response to y
1 1
o Ve =u(x,y) =;u1(x;51)+“'+;u1(x;ST)

o Uy(x,81) + -+ u(x,sr) <best row in hindsight m

o It follows that T - Vg =T -V, —2,/Tlogn

e 0T < 2\/T10gn — contradiction for large T =
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SUMMARY

* Terminology:
o Regret

o No-regret learning
* Algorithms:

o Randomized weighted majority
* Big ideas:

o It is possible to achieve no-regret learning
guarantees!

o Connections between game theory and
learning theory
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