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/ZERO-SUM GAMES

e Maximin (randomized) strategy of player 1
maximizes the worst-case expected payoft

* In the penalty shot game, optimal strategy for

both players is playing (%,%)

* In the game below, if shooter uses (p,1 — p):

o Jump left: —§+1—p=1—%p

2

o Maximize min{1 — %p, 2p — 1} over p
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/ZERO-SUM GAMES

* Denote the reward of player 1 from
strategies (sq,S,) by R(sq,5,)
 Maximin strategy is computed via LP:

max w
s.t. Vs; €S, X5, esP(S1)R(S1,82) = w

z p(sy) =1

SleS
VSl € S,p(Sl) >0
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THE MINIMAX THEOREM

* Theorem [von Neumann 1928|:
Every 2-player zero-sum game has
a unique value v such that:

o Player 1 can guarantee value at
least v

o Player 2 can guarantee loss at
most v

* Poll 1: How many Nash equilibrium
payoffs do zero-sum games have?

1. At most one

2. At least one

3. Exactly one
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EXTENSIVE-FORM GAMES

Moves are done
sequentially, not
simultaneously

Game forms a tree

Nodes are labeled by
players

Leaves show payofts
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EXTENSIVE VS. NORMAL FORM

L/ \R L/L L/R R/L R/R

B 5a 50
L/ \R L/ \R

IR
24 53 1,0 32

Problem: Normal-form representation is exponential
in the size of the extensive-form representation
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EXTENSIVE VS. NORMAL FORM

Respond .
Compromise Nuclear war

Compromise Nuclear war
2.1 -109-10°

Problem: (ignore, nuclear war) is a Nash equilibrium,
but threat isn’t credible!
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SUBGAME-PERFECT EQUILIBRIUM

* FEach subtree forms a subgame

* A set of strategies is a
subgame-perfect equilibrium if
it 1s a Nash equilibrium in
each subgame

Respond Ignore

Compromise Nuclear war

* A player may be able to
improve his equilibrium payoft 2.1 -109-10°
by eliminating strategies!

) w 15780 Spring 2018: Lecture 21 Carnegie Mellon University 9




DOOMSDAY MACHIN!

-




BACKWARD INDUCTION

24

24 53 32 24 53 1,0 3,2 1,0 3,2

1,0 0,1
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BACKWARD INDUCTION

3,2
2.4 3,2
24 5 2
Subgame-perfect _/
equilibrium! 1,0 0.1
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Extensive-form games
can be represented as
normal-form games.
How come they
always have a pure
equilibrium?
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EXAMPLE: CENTIPEDE GAM!

-

(OO

1,-1 0,2 3.1 2.4 5.3 4.6

Even subgame-perfect equilibrium can lead to strange outcomes!
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CHECKERS IS SOLVED

» Zermelo’s Theorem [1913|: Either
white can force a win, or black
can force a win, or both sides can
force a draw

 Proof: Backward induction m

* Schaetfer solved the game in 2007,
after 18 years of computation: It’s
a tie!

e Checkers game tree has 10%"
nodes; chess has 10%; go has 10"
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ALPHAGO

* In 2016, AlphaGo beat Lee
Sedol, one of the strongest
players in the history of go,
in a d-game match

* A milestone that experts = -
thought was a decade away PG DNEA

At last — a computer program that
can beat a champion Go player PAGE484

* Combination of tree search ALL SYSTEMS /GO

techniques and deep
reinforcement learning

/NATURE

I
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IMPERFECT INFORMATION GAMES

A chance node chooses
between several actions
according to a known
probability distribution

 An information set is a
set of nodes that a
player may be in, given
the available
information

* A strategy must be
identical for all nodes in
an information set



EXAMPLE: SPACESHIP GAME

* Poll 2: In Nash
equilibrium, what is
the expected payoit of
player 17
1. 0.9
2. 1
3. 1.9
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EXAMPLE: SPACESHIP GAME
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EXAMPLE: SPACESHIP GAME

Carnegie Mellon University 21




Impossible to
compute the optimal
strategy of a subgame

in isolation, unlike
prefect info games!
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SOLVING IMPERFECT INFO GAMES

* Focus on zero-sum games (such as poker)

* We just saw that linear programming
solves normal-form, zero-sum games in
polynomial time

* But size of the normal-form game is
exponential in the extensive-form
representation!

* Work directly on extensive-form game
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SOLVING IMPERFECT INFO GAMES

 Player 1 constraints are linear:
o Patpp=1
o Pctpg=1
o DPetpr=1
o Vx,p,=0
* Fix a strategy qq, qp for player 2,
then the best response of player 1

is:
max 2ppqaPy — 2Pp4pPs ~ 2Pcqa + 6Pa
which leads to a nonconvex 0
problem!
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SEQUENCE FORM

* Insight: last action taken by a player is the same
for all nodes in an information set

o Perfect recall: A player never forgets something he
knew in the past

o This is a restriction on the structure of the game

* Introduce scaled probability variables p,,

* Information set constraint: Y.,ca, Px = Py, Where

A; is the set of actions in information set I, and
y is the last action before reaching [

 To recover probabilities, set p, = px/py
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Player 1 constraints are linear:

o DPatpp=1

o DPetpg=1

o Pet+DPr=Dp

o Vx,py =0
Fix a strategy qq,qp for player 2,
then the best response of player 1
1S:
max 2qapy = 24gP; ~ 2Pcda + 6P

which 1is linear! 0
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SEQUENCE FORM

* We showed how to compute a best response for
a fixed opponent strategy

* Fact: Using LP duality, we can compute best
responses for both players simultaneously

* Fact: This gives a method for computing optimal
strategies

* Used to compute optimal strategies for Rhode
Island Hold’em poker, which has roughly 10%
nodes |Gilpin and Sandholm 2007]

e But No Limit Texas Hold’em has 10197 nodes
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Be sure to tweet @WinBigRivers and @SCSatCMU using #BrainsvsAl

-BRAINS VS. ARTIFICIAL INTELLIGENCE

WE ARE UPPING THE ANTE!

JANUARY 11-30 | 11AM-7PM 120,000 HANDS NO-LITIT HOLD ‘EM S Ve ki Uit At A e
Hands Dealt: 120,000/120,000

BRAINS : ($1,766,250) LIBRATUS : $1,766,250

DONG KIM : ($85,649) JASON LES : ($880,087)
LIBRATUS : $85,649 LIBRATUS : $880,087
JIMMY CHOU : ($522,857) DANIEL MCAULAY : ($277,657)

LIBRATUS : $522,857 LIBRATUS : $277,657

January 11-30, 2017, at Rivers Casino, Pittsburgh
The first time a computer program has defeated top human pros

in a heads-up, no-limit poker game
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SUMMARY

* Terminology:
o Extensive-form game
o oubgame pertect equilibrium

o Imperfect information, information set

o Pertect recall

* Algorithms:
o Solving zero-sum games via LP

o oequence form-based approach to solving
imperfect information games
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